(4-1/n)+(4-2/n)+(4-3/n)+..... N
Answers
Answered by
2
Answer:
Let the given series be x
x = (4-1/n) + (4-2/n) + (4-3/n) + .....
= ( 4+4+4....) - (1/n+2/n+3/n+....)
= x₁-x₂
- x₁ = 4( 1+1+1...)
a=1, d=0
x₁ = 4*n/2[ 2*1+( n-1)*0] ( since xₙ= n/2[ 2a+( n-1)*d]
⇒ x₁ = 4n
- x₂ = 1/n(1+2+3 ....)
a = 1, d = 2-1=1
x₂ = 1/n*n/2 [2*1+(n-1)*1]
= 1/2 (2+n-1)
⇒ x₂ = 1/2 ( 1+n)
Thus x= x₁-x₂
x= 4n-1/2 ( 1+n )
x= (8n-1-n)/2
x= 7n-1/ 2
HENCE THE SUM OF N TERM SERIES= 7n-1/2
Answered by
2
Answer:
we have to find:-
the sum of 4-1/n, 4-2/n, 4-3/n = ?
solution:-
we know that :
1 + 2 +3 + 4 +5 +6 + ...........+ n = n(n +1) / 2
and
1 + 1+ 1 + 1 + 1 + .............+ n = n
Here,
sum of 4-1/n, 4-2/n, 4-3/n up to the nth term
= (4 + 4 + 4 + 4 + 4 + ......... upto n terms) + (-1/n - 2/n - 3/n - ..........upto n terms)
= 4 ( 1+1+1+1.......... upto n terms) - 1/n (1 + 2 + 3 +4 .........upto n terms)
= 4 n - 1/n × n(n +1)/2
= 4n - (n+1)/2
= [ 8n - (n+1) ] / 2 .......taking L.C.M
=( 7n - 1) / 2 Answer
Similar questions