Math, asked by bgirlyfan, 6 months ago

4) 1 + tan2θ = ?

(A) cot2 θ (B) cosec2 θ (C) sec2 θ (D) tan2 θ​

Answers

Answered by xnikhilx
0

\huge{\underline{\red{\mathfrak{♡Answer♡}}}}

\sf{1~tan²\theta~=~cot²\theta}

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅

Answered by SugarCrash
5

Answer :

\longrightarrow \bf \large \red{1 +tan^2\theta =sec^2\theta }

Solution :

To Find :

  • \sf 1+ tan^2\theta .

We know that,

\red\bigstar \boxed{\sf sin^2\theta+cos^2\theta=1} \sf ....(1)

Dividing (1) by cos^2\theta . we got,

\sf \dfrac{sin^2\theta}{cos^2\theta}+\cancel{\dfrac{cos^2\theta}{cos^2\theta}}= \dfrac{1}{cos^2\theta}

We know that ,

 \red\bigstar \boxed{ \sf \dfrac{sin\theta}{cos\theta} = tan\theta} \:\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ \red\bigstar \boxed{ \sf \dfrac{1}{cos\theta} = sec\theta}

Appling this here,

\leadsto \sf tan^2\theta + 1 = sec^2\theta

Hence,

\green\star\sf tan^2\theta + 1 = sec^2\theta

{\fcolorbox{red}{blue}{\orange}{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}}

Similar questions