Math, asked by godavrisuresh1984, 3 months ago

4+√2/2+√2=a-√b
compare ​

Answers

Answered by ItzMeMukku
35

\textbf{Given:}

\dfrac{4+\sqrt{2}}{2+\sqrt{2}}=a-\sqrt{b}

\textbf{To find:}

\text{The values of a and b}The values of a and b

\textbf{Solution:}

\text{Consider,}

\dfrac{4+\sqrt{2}}{2+\sqrt{2}}=a-\sqrt{b}

\text{To rationalize the denominator multiply both numerator}

\text{denominator by $2-\sqrt{2}$}

\dfrac{4+\sqrt{2}}{2+\sqrt{2}}{\times}\dfrac{2-\sqrt{2}}{2-\sqrt{2}}=a-\sqrt{b}

\dfrac{(4+\sqrt{2})(2-\sqrt{2})}{(2+\sqrt{2})(2-\sqrt{2})}=a-\sqrt{b}

\dfrac{8-4\sqrt{2}+2\sqrt{2}-2}{4-2}=a-\sqrt{b}

\dfrac{6-2\sqrt{2}}{2}=a-\sqrt{b}

\dfrac{2(3-\sqrt{2})}{2}=a-\sqrt{b}

3-\sqrt{2}=a-\sqrt{b}

\text{Comparing on bothsides, we get}

a=3\;\text{and}\;b=2a=3and b=2

\therefore\textbf{The value of a and b are 3 and 2}

Find more:

√7 - 2/√7 + 2 = a√7 + b

https://brainly.in/question/1115376

If x = √7+ √3 and xy = 4, then x4 + y4 =

https://brainly.in/question/16537214

Similar questions