Math, asked by ripanripon644, 6 hours ago

4√2√3√729=p then the value of P20÷162+5/2?

1) 2
2) 1
3) 4
4) 3​

Answers

Answered by Learner0701
27

Answer:

Option 3

Step-by-step explanation:

Cube root of 729 is 9

Square root of 9 is 3

\sqrt[4]{\sqrt[2]{\sqrt[3]{729} } } = p\\\\\sqrt[4]{\sqrt[2]{9} } = p\\\\\sqrt[4]{3} = p\\\\3 = p^{4}

 

P ^ 20 can be written as P ^ 4 * P ^ 4 * P ^ 4 * P ^ 4 * P ^ 4  

P ^ 20 = 3 ^ 5 or 3 * 3 * 3 * 3 * 3 =  243

= 243 / 162 + 5 / 2

= 3 / 2 + 5 / 2

= 4 ans.

Answered by pulakmath007
13

SOLUTION

TO CHOOSE THE CORRECT OPTION

\displaystyle \sf{   \sqrt[4]{ \sqrt[2]{ \sqrt[3]{729} } } = p }

Then the value of

\displaystyle \sf{  \frac{ {p}^{20} }{162}  +  \frac{5}{2}  =  }

1) 2

2) 1

3) 4

4) 3

EVALUATION

\displaystyle \sf{   \sqrt[4]{ \sqrt[2]{ \sqrt[3]{729} } } = p }

\displaystyle \sf{ \implies  p = \sqrt[4]{ \sqrt[2]{ \sqrt[3]{729} } } }

\displaystyle \sf{ \implies  p = \sqrt[4]{ \sqrt[2]{ \sqrt[3]{9 \times 9 \times 9} } } }

\displaystyle \sf{ \implies  p = \sqrt[4]{ \sqrt[2]{ \sqrt[3]{ {9}^{3} } } } }

\displaystyle \sf{ \implies  p = \sqrt[4]{ \sqrt[2]{ 9 } } }

\displaystyle \sf{ \implies  p = \sqrt[4]{ \sqrt[2]{  {3}^{2} } } }

\displaystyle \sf{ \implies  p = \sqrt[4]{ 3 } }

\displaystyle \sf{ \implies   {p}^{4} = 3  }

Now

\displaystyle \sf{  \frac{ {p}^{20} }{162}  +  \frac{5}{2}  }

\displaystyle \sf{  =  \frac{{ ({p}^{4} )}^{5}  }{162}  +  \frac{5}{2}  }

\displaystyle \sf{  =  \frac{{ (3)}^{5}  }{162}  +  \frac{5}{2}  }

\displaystyle \sf{  =  \frac{81 \times 3  }{162}  +  \frac{5}{2}  }

\displaystyle \sf{  =  \frac{ 3  }{2}  +  \frac{5}{2}  }

\displaystyle \sf{  =  \frac{ 3 + 5  }{2}    }

\displaystyle \sf{  =  \frac{ 8  }{2}    }

\displaystyle \sf{  =  4 }

FINAL ANSWER

Hence the correct option is 3) 4

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the value of x (2) 5) -³×(2/5) ^18=(2/5)^10x

https://brainly.in/question/47348923

2. If (-2)m+1 × (-2)4 = (-2)6 then value of m =

https://brainly.in/question/25449835

Similar questions