Math, asked by SWASTI29, 6 months ago

4^(2x-1)-16^(x-1)=384 Find the value of x​

Answers

Answered by jainkittu495
0

Step-by-step explanation:

i hope this will help you

Attachments:
Answered by shilshaurya5606
2

Answer:

11/4 or 2.75

Step-by-step explanation:

4^{2x - 1} - 16^{x - 1} = 384

=> 4^{2x - 1} - 4^{2}^{(x - 1)} = 384

=> 4^{2x - 1} - 4^{2x - 2} = 384

=> \frac{4^{2x}}{4^{1}} - \frac{4^{2}}{4^{2}} = 384                            (Laws of exponents)

=> 4^{2x} (\frac{1}{4} - \frac{1}{16}) = 384                       (Taking 4^{2x} common)    

=> 4^{2x} (\frac{3}{16})

=> 4^{2x} = 384(\frac{16}{3})

=> 4^{2x} = 2048

=> 4^{2x} = 4^{\frac{11}{2}}

Comparing, 2x = 11/2

x = 11/4 or 2.75

Similar questions