Math, asked by nagaprashanth2004, 9 months ago

√4+√3/2√4-√3=a-b√12 ​

Answers

Answered by BrainlyPopularman
4

GIVEN :

  \\  \:  \: { \huge{.}} \:  \: { \bold{ \dfrac{ \sqrt{4}  +  \sqrt{3} }{2 \sqrt{4}  -  \sqrt{3} } = a - b \sqrt{12}  }} \\

TO FIND :

a and b = ?

SOLUTION :

  \\  \implies { \bold{ \dfrac{ \sqrt{4}  +  \sqrt{3} }{2 \sqrt{4}  -  \sqrt{3} } = a - b \sqrt{12}  }} \\

• Rationalization of denominator –

  \\  \implies { \bold{ \dfrac{ \sqrt{4}  +  \sqrt{3} }{2 \sqrt{4}  -  \sqrt{3} }  \times  \dfrac{2 \sqrt{4} +  \sqrt{3}  }{2 \sqrt{4}  +  \sqrt{3} } = a - b \sqrt{12}  }} \\

  \\  \implies { \bold{ \dfrac{( \sqrt{4}  +  \sqrt{3})(2 \sqrt{4} +  \sqrt{3})}{(2 \sqrt{4}  -  \sqrt{3})(2 \sqrt{4} +  \sqrt{3})}  = a - b \sqrt{12}  }} \\

• Using identity –

  \\  \:  \:  \twoheadrightarrow \:  { \bold{ (a + b)(a - b)  = {a}^{2} -  {b}^{2} }} \\

  \\  \implies { \bold{ \dfrac{( \sqrt{4}  +  \sqrt{3})(2 \sqrt{4} +  \sqrt{3})}{(2 \sqrt{4})^{2}  - ( \sqrt{3})^{2} }  = a - b \sqrt{12}  }} \\

  \\  \implies { \bold{ \dfrac{ \{2 {( \sqrt{4} )}^{2} +  \sqrt{4}  \sqrt{3}  +  2\sqrt{3} \sqrt{4}  + {( \sqrt{3}) }^{2} \}}{(2 \sqrt{4})^{2}  - ( \sqrt{3})^{2} }  = a - b \sqrt{12}  }} \\ .

  \\  \implies { \bold{ \dfrac{ \{8 +  \sqrt{12}+  2\sqrt{12}+3 \}}{16 - 3}  = a - b \sqrt{12}  }} \\

  \\  \implies { \bold{ \dfrac{11 + 3\sqrt{12}}{13}  = a - b \sqrt{12}  }} \\

  \\  \implies { \bold{ \dfrac{11}{13} +  \dfrac{3\sqrt{12}}{13}  = a - b \sqrt{12}  }} \\

▪︎ Now compare –

  \\ \:  \:   \dashrightarrow \:  \:  \large { \boxed{ \bold{a = \dfrac{11}{13}}}} \\

• And –

  \\ \:  \:   \dashrightarrow \:  \:  \large { \boxed{ \bold{b=  -  \dfrac{3}{13}}}} \\

Answered by MaIeficent
24

Step-by-step explanation:

Step-by-step explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

\frac{4 +  \sqrt{3} }{2\sqrt{4} -  \sqrt{3} } = a - b \sqrt{12}

{\blue{\underline{\underline{\bold{To\:Find:-}}}}}

  • The values of ' a ' and ' b '

\tt\orange{Concept \: used\:here:-}

  • Rationalising of the numbers.

{\green{\underline{\underline{\bold{Solution:-}}}}}

\frac{4 +  \sqrt{3} }{4-  \sqrt{3} }  = a - b \sqrt{12}

By rationalising:-

\frac{4 +  \sqrt{3} }{2 \sqrt{4} -  \sqrt{3} }  \times  \frac{2 \sqrt{4}  +  \sqrt{3} }{2 \sqrt{4}  +  \sqrt{3} }  = a - b \sqrt{12} \\  \\  \implies  \frac{ {(4 +  \sqrt{3} )}(2 \sqrt{4}  + 3) }{ ({2 \sqrt{4} )}^{2} -  {( \sqrt{3} )}^{2}  } = a - b \sqrt{12}  \: \: \: \:  [(a+b) (a-b) = {a}^{2}-{b}^{2}]\\  \\  \implies \frac{ 2{ (\sqrt{4}) }^{2}  +   \sqrt{4} \sqrt{3}  + 2( \sqrt{4} )( \sqrt{3}) +  ({ \sqrt{3}) }^{3}  }{16-3}  = a - b \sqrt{12}\: \: \: \:   \\  \\  \implies \frac{8 +  \sqrt{12} + 2\sqrt{12} + 3 }{ 13}  = a  -  b \sqrt{12}  \\  \\  \implies   \frac{11 + 3 \sqrt{12} }{13}   = a  -  b \sqrt{12}    \\  \\  \implies \frac{11}{13}  +  \frac{3 \sqrt{12} }{13}  = a - b \sqrt{12}

Now comparing the values of \frac{11}{13}  +  \frac{3 \sqrt{12} }{13} with a -  b\sqrt{12}

\boxed{\implies a = \frac{11}{13}}

\boxed{\implies b = - \frac{3}{13}}

Similar questions