Math, asked by Anonymous, 10 months ago

4√3+5√2÷√48+√18....(Rationalise the denominator)

solve it plss..

Answers

Answered by Anonymous
1

Answer:

Answer = 3/5 ................

Attachments:
Answered by tahseen619
3

Answer:

\red{\boxed{\bf{\frac{9 + 4\sqrt{6}}{15}}}}

To Rationalize:

\dfrac{4\sqrt{3} + 5 \sqrt{2}  }{ \sqrt{48}  +  \sqrt{18}}

Solution:

\sf\:\frac{4\sqrt{3} + 5 \sqrt{2}}{\sqrt{48} +  \sqrt{18}} \\  \\\implies\sf\:\frac{4 \sqrt{3}  + 5 \sqrt{2} }{ \sqrt{16 \times 3}  +  \sqrt{9 \times 2} }  \\  \\\implies\sf\:\frac{4 \sqrt{3}  + 5 \sqrt{2} }{ 4\sqrt{3}  + 3 \sqrt{2} } \\  \\\implies\sf\:\frac{(4 \sqrt{3} + 5 \sqrt{2} )(4 \sqrt{3} - 3 \sqrt{2})}{(4 \sqrt{3} + 3 \sqrt{2})(4 \sqrt{3}  - 3 \sqrt{2})}\:\:\: [\because\:a^2-b^2 = (a+b)(a-b)] \\  \\\implies\sf\:\frac{4 \sqrt{3} \times 4 \sqrt{3} - 4 \sqrt{3} \times 3 \sqrt{2} + 5 \sqrt{2} \times 4 \sqrt{3} - 5 \sqrt{2} \times 3 \sqrt{2} }{ {(4 \sqrt{3})}^{2}  -  {(3 \sqrt{2})}^{2} }   \\  \\\implies\sf\:\frac{48 - 12 \sqrt{6} + 20 \sqrt{6} - 30}{48 - 18} \\  \\\implies\sf\:\frac{48 - 30 + 20 \sqrt{6} - 12 \sqrt{6}  }{30} \\  \\ \implies\sf\:\frac{18  + 8 \sqrt{6} }{30} \\  \\ \implies\sf\:\frac{2(9 + 4 \sqrt{6})}{30} \\  \\\implies\sf\:\frac{9 + 4 \sqrt{6} }{15}

Extra Information:

Rationalizing the denominator is a process by which we can write the irrational denominator in the form of Rational no.

For Rationalizing we use a Conjugate surds or Rationalizing factor which is a factor of the irrational denominator.

e.g conjugate surd of √a is √a and the conjugate surds √a - b is √a + b.

Similar questions