Math, asked by nithishareddyettedi, 7 months ago

4^3+5^3+6^3+....+15^3​

Answers

Answered by shadowsabers03
8

We use the formula,

\longrightarrow\boxed{1^3+2^3+3^3+\,\dots\,+n^3=\left(\dfrac{n(n+1)}{2}\right)^2}

Here,

\longrightarrow S=4^3+5^3+6^3+\,\dots\,+15^3

\longrightarrow S=(1^3+2^3+3^3+\,\dots\,+15^3)-(1^3+2^3+3^3)

\longrightarrow S=\left(\dfrac{15\times16}{2}\right)^2-\left(\dfrac{3\times4}{2}\right)^2

\longrightarrow S=120^2-6^2

\longrightarrow S=14400-36

\longrightarrow\underline{\underline{S=14364}}

Hence 14364 is the answer.

Answered by Arceus02
7

Sum of cubes of first \sf n natural numbers is given by,

\green{\bigstar} \ \  \boxed{\sf{1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \Bigg[\dfrac{n(n+1)}{2}\Bigg]^2}}

\sf{\\}

Let, \sf S = 4^3 + 5^3 + 6^3 + \dots + 15^3

\longrightarrow \scriptsize \sf S = (1^3 + 2^3 + 3^3 + 4^3 +\dots+15^3) - (1^3 + 2^3 + 3^3)

\longrightarrow \sf S = \Bigg[\dfrac{15(15+1)}{2}\Bigg]^2 - \Bigg[\dfrac{3(3+1)}{2}\Bigg]^2

\longrightarrow \sf S = (15 * 8)^2 - (3 * 2)^2

\longrightarrow \sf S = 120^2 - 6^2

\longrightarrow \sf S = 14400 - 36

\longrightarrow \sf S = 14364

\sf{\\}

Hence, the answer is,

\longrightarrow \underline{\underline{\sf{\green{4^3 + 5^3+6^3+\dots+15^3 = 14364}}}}

Similar questions