Math, asked by manasviagarwal90, 10 months ago

4+3√5÷4-3√5 = a+b √5

Answers

Answered by BrainlyPopularman
16

Question :

 \\  \: { \huge{.}} \:  \: { \bold{if \:  \: \:   \dfrac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5}  }  \:  \:  = a + b \sqrt{5}  \:  \: then \:  \: find \:  \: a  \:  \: and \:  \: b}} \\

ANSWER :

GIVEN :

 \\  \: { \huge{.}} \:  \: { \bold{\:   \:   \dfrac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5}  }  \:  \:  = a + b \sqrt{5}  \:  }} \\

TO FIND :

Value of 'a' and 'b' = ?

SOLUTION :

 \\  \:  \implies \: { \bold{  \dfrac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5}  }  \:  \:  = a + b \sqrt{5}  \:  }} \\

• Rationalization of denominator –

 \\  \:  \implies \: { \bold{  \dfrac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5}  }  \times  \dfrac{4 + 3 \sqrt{5} }{4 + 3 \sqrt{5} }  \:  \:  = a + b \sqrt{5}  \:  }} \\

 \\  \:  \implies \: { \bold{  \dfrac{(4 + 3 \sqrt{5})  {}^{2}   }{(4 - 3 \sqrt{5}  )( 4 + 3 \sqrt{5}) }  = a + b \sqrt{5}  \:  }} \\

• Using property –

 \\  \:  \:  \longrightarrow \:  \: \large { \bold{  {(a + b)}^{2}    =  {a}^{2} +  {b}^{2} + 2ab  }} \\

 \\  \:  \:  \longrightarrow \:  \: \large { \bold{  {(a + b)}(a - b)   =  {a}^{2}  -   {b}^{2}   }} \\

• So that –

 \\  \:  \implies \: { \bold{  \dfrac{16 + 45 + 24 \sqrt{5}   }{(4 ) {}^{2}  - (3 \sqrt{5}  ) {}^{2}  }  = a + b \sqrt{5}  \:  }} \\

 \\  \:  \implies \: { \bold{  \dfrac{16 + 45 + 24 \sqrt{5}   }{16 - 45 }  = a + b \sqrt{5}  \:  }} \\

 \\  \:  \implies \: { \bold{  \dfrac{61+ 24 \sqrt{5}   }{ - 29 }  = a + b \sqrt{5}  \:  }} \\

 \\  \:  \implies \: { \bold{  \dfrac{61}{ - 29}  + \dfrac{24 \sqrt{5}   }{ - 29 }  = a + b \sqrt{5}  \:  }} \\

• Now compare –

 \\  \:  \implies \: { \bold{a =   -  \dfrac{61}{  29}  \:  \:  and \:  \:  b =  -  \dfrac{24    }{  29 }    }} \\

 \\

• Hence ,    \:   \: { \bold{a =   -  \dfrac{61}{  29}  \:  \:  and \:  \:  b =  -  \dfrac{24  }{  29 }    }} \\

Answered by MisterIncredible
8

Given :-

 \rightarrowtail \tt \dfrac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} } = a + b \sqrt{5}

Required to find :-

Values of " a " and " b " ?

Solution :-

Given :-

 \rightarrowtail \tt \dfrac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} } = a + b \sqrt{5}

we need to find the values of ' a ' and ' b '

So,

Consider the LHS part ;

 \mapsto \sf \dfrac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }

Here we need to factorise the denominator .

So,

Rationalising factor of 4 - 3√5 = 4 + 3√5

So,

 \mapsto \rm  \dfrac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  \times  \dfrac{4 + 3 \sqrt{5} }{ 4+ 3 \sqrt{5} }

Here we need to use some identities ;

The identities are ;

  • 1. ( x + y )² = + 2xy +

  • 2. ( x + y ) ( x - y ) = -

  • 3. ( x + y ) ( x + y ) = ( x + y )²

Using 2nd , 3rd identities solve it ;

So,

 \mapsto \rm \dfrac{(4 + 3 \sqrt{5} {)}^{2}  }{(4 {)}^{2} - ( 3\sqrt{5} {)}^{2}  }

Now, using 1st identity expand the numerator

 \mapsto \rm  \dfrac{(4 {)}^{2}  + (3 \sqrt{5} {)}^{2}  + 2(4)(3 \sqrt{5})  }{16 - 45}

 \mapsto \rm \dfrac{16 + 45 + 24 \sqrt{5} }{ - 29}

 \mapsto \rm \:  \dfrac{61 + 24 \sqrt{5} }{ - 29}

This implies ;

 \mapsto \rm  \dfrac{ \:  \:  \:  \:  \: 61}{ -29}  +  \bigg(  - \dfrac{ 24 \sqrt{5} }{ 29}  \bigg)

From this we can conclude that ;

The LHS is in the form of RHS

So,

Equal the values on both sides ,

\mapsto \rm  \dfrac{ \:  \:  \:  \:  \: 61}{ -29}  +  \bigg(  - \dfrac{ 24 \sqrt{5} }{ 29}  \bigg) = a + b \sqrt{5}

Hence,

 \huge  \leadsto  \tt \: a \:  =  \:  \frac{ \:  \:  \:  \:  61}{ - 29}

 \huge  \leadsto \tt \: b \:  =  \:  \frac{ \:  \:  \:  \:  \ 24}{ - 29}

Similar questions