Math, asked by mandeep6492, 7 months ago

4:- 3. The equal sides of the isosceles triangle are 12 cm, and the perimeter is 30 cm. The area of this triangle is:
9√15 (cm)
6√15 (cm)
3√15 (cm)
√15 (cm)

Answers

Answered by zaidarif005
2

Answer:

Hey mate!

Please see the attachment below.

The answer is 9\sqrt{15}cm^{2}

Hope this helps :)

Please mark me as brainliest :)

^_^ ^_^.

Attachments:
Answered by sethrollins13
78

Given :

  • Two equal sides of an isosceles triangle are 12 cm each .
  • Perimeter is 30 cm .

To Find :

  • Area of Triangle .

Solution :

  • a = 12 cm
  • b = 12 cm
  • c = ?

\longmapsto\tt{a+b+c=30}

\longmapsto\tt{12+12+c=30}

\longmapsto\tt{24+c=30}

\longmapsto\tt{c=30-24}

\longmapsto\tt\bf{c=6\:cm}

Now ,

\longmapsto\tt{s=\dfrac{a+b+c}{2}}

\longmapsto\tt{s=\dfrac{12+12+6}{2}}

\longmapsto\tt{s=\cancel\dfrac{30}{2}}

\longmapsto\tt\bf{s=15\:cm}

\longmapsto\tt{Area=\sqrt{s(s-a)(s-b)(s-c)}}

\longmapsto\tt{\sqrt{15(15-12)(15-12)(15-6)}}

\longmapsto\tt{\sqrt{15\:(3)\:(3)\:(9)}}

\longmapsto\tt{\sqrt{5\times{3}\times{3}\times{3}\times{3}\times{3}}}

\longmapsto\tt{3\times{3}\sqrt{5\times{3}}}

\longmapsto\tt\bf{9\sqrt{15\:cm}{cm}^{2}}

So , The Area of Triangle is 915 cm² ...

Similar questions