Math, asked by Sahilsingh3083, 18 days ago

4+3i/(2+3i)(4-3i) in the form of a+ib

Answers

Answered by MysticSohamS
2

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

so \: here \: let \\   \\  \frac{4 + 3i}{(2 + 3i)(4 - 3i)}  = a + ib \\  \\  =  \frac{4 + 3i}{8 - 6i + 12i - 9i {}^{2} }  \\  \\  =  \frac{4 + 3i}{8 - 9( - 1) + 6i}  \\  \\  =  \frac{4 + 3i}{(8 + 9) + 6i}  \\  \\  =  \frac{4 + 3i}{17 + 6i}  \\  \\  \\  =  \frac{4 + 3i}{17 + 6i}  \times  \frac{17 - 6i}{17 - 6i}  \\  \\  =  \frac{(4 + 3i)(17 - 6i)}{(17) {}^{2}  - (6i) {}^{2} }  \\  \\  =  \frac{68 - 24i + 51i - 18i {}^{2} }{289 - 36i {}^{2} }  \\  \\  =  \frac{68 - 18( - 1) + 27i}{289 - 36( - 1)}  \\  \\  \\  =  \frac{68 + 18 + 27i}{289 + 36}  \\  \\  \\  =  \frac{86 + 27i}{325}  \\  \\ a + ib =  \frac{86}{325}  +  \frac{27i}{325}  \\  \\ \\  equating \: real \: and \: imaginary \: parts \\ we \: get \\  \\  \\ a =  \frac{86}{325}  \\  \\ b =  \frac{27}{325}

Similar questions