Math, asked by swethasriaps2006, 9 months ago

4+3root 5/4-3root5= a+b root 5 find the value of A and B​

Answers

Answered by Anonymous
2

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ value \ of \ a \ is \ -\frac{61}{29} \ and \ b \ is \ -\frac{24}{29}}

\sf\orange{Given:}

\sf{\implies{\frac{4+3\sqrt5}{4-3\sqrt5}=a+b\sqrt5}}

\sf\pink{To \ find:}

\sf{The \ values \ of \ a \ and \ b.}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{\frac{4+3\sqrt5}{4-3\sqrt5}=a+b\sqrt5}}

___________________________________

\sf{\implies{\frac{4+3\sqrt5}{4-3\sqrt5}}}

\sf{On \ rationalising \ the \ denominator}

\sf{\implies{\frac{4+3\sqrt5(4+3\sqrt5)}{4-3\sqrt5(4+3\sqrt5)}}}

\sf{\implies{\frac{(4+3\sqrt5)^{2}}{4^{2}-(3\sqrt5)^{2}}}}

\sf{\implies{\frac{16+24\sqrt5+45}{16-45}}}

\sf{\implies{\frac{61+24\sqrt5}{-29}}}

\sf{\implies{-\frac{61}{29}-\frac{24\sqrt5}{29}}}

___________________________________

\sf{\therefore{a+b\sqrt5=-\frac{61}{29}-\frac{24\sqrt5}{29}}}

\sf{On \ comparing}

\boxed{\sf{a=-\frac{61}{29}}}

\sf{b\sqrt5=-\frac{24\sqrt5}{29}}

\sf{\therefore{b=-\frac{24\sqrt5}{29\times\sqrt5}}}

\boxed{\sf{\therefore{b=-\frac{24}{29}}}}

\sf\purple{\tt{\therefore{The \ value \ of \ a \ is \ -\frac{61}{29} \ and \ b \ is \ -\frac{24}{29}}}}

Similar questions