Math, asked by priyanka970, 9 months ago

(4√5+3√2)÷3√5-2√2=a+b√10.
find a and b​

Answers

Answered by utsav96
4
Pls mark as brainliest answer
Attachments:
Answered by InfiniteSoul
21

\sf{\underline{\boxed{\pink{\large{♡ Question ♡}}}}}

  • if  \dfrac{ 4 \sqrt{5} + 3 \sqrt {2}}{3 \sqrt{5} - 2 \sqrt {2}} = a + b \sqrt{10} find a and b

\sf{\underline{\boxed{\pink{\large{♡ Solution ♡}}}}}

 \implies \dfrac{ 4 \sqrt{5} + 3 \sqrt {2}}{3 \sqrt{5} - 2 \sqrt {2}} = a + b \sqrt{10}

 \implies \dfrac{ 4 \sqrt{5} + 3 \sqrt {2}}{3 \sqrt{5} - 2 \sqrt {2}} \times \dfrac{ 3\sqrt{5} + 2 \sqrt {2}}{3 \sqrt{5} + 2 \sqrt {2}}  = a + b \sqrt{10}

\sf{\underline{\boxed{\blue{\large{\mathsf{ ( a + b ) ( a - b ) = a^2 - b^2 }}}}}}

\implies \dfrac{ 4\sqrt{5}  (3\sqrt{5} + 2 \sqrt {2})  + 3 \sqrt {2}  (3\sqrt{5} + 2 \sqrt {2}) }{ ( 3\sqrt{5})^2 - ( 2 \sqrt{2})^2} = a + b \sqrt{10}

\implies \dfrac{60 + 8 \sqrt{10} + 9\sqrt{10} + 12 }{ 45 - 8 } = a + b \sqrt{10}

\implies \dfrac{72 + 17 \sqrt{10} }{ 37 } = a + b \sqrt{10}

  • compare the terms

\sf{\underline{\boxed{\green{\large{\mathsf{ a = \dfrac{72}{37} }}}}}}

\implies \dfrac{17 \sqrt{10}}{37}= b\sqrt{10}

\implies \dfrac{ 17}{ 37} = b \dfrac{\sqrt{10}}{\sqrt{10}}

\implies b = \dfrac{17}{37}

\sf{\underline{\boxed{\green{\large{\mathsf{ b = \dfrac{17}{37} }}}}}}

______________________❤

Similar questions