Math, asked by sabsanlal1, 3 months ago

4+√5/4-√5 + 4-√5/4+√5​

Answers

Answered by ankushsaini23
1

According to question:

 =  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }

 =  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }

 =  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  \times  \frac{4 +  \sqrt{5} }{4 +  \sqrt{5} }

 =  \frac{ {(4 +  \sqrt{5} })^{2} }{ {(4)}^{2} -  {( \sqrt{5} })^{2}  }

 =  \frac{ {(4)}^{2} +  {( \sqrt{5} })^{2}   + 2(4)( \sqrt{5}) }{16 - 5}

 =  \frac{16 + 5 + 8 \sqrt{5} }{11}

 =  \frac{21 + 8 \sqrt{5} }{11}

Now:

 =  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }

 =  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \times  \frac{4 -  \sqrt{5} }{4 -  \sqrt{5} }

 =  \frac{ {(4 -  \sqrt{5} })^{2} }{ {(4)}^{2}  -  {( \sqrt{5} })^{2} }

 =  \frac{ {(4)}^{2} +  {( \sqrt{5} })^{2}  -  2(4)( \sqrt{5} )  }{16 - 5}

 =  \frac{16 + 5  - 8 \sqrt{5} }{11}

 =  \frac{21 - 8 \sqrt{5} }{11}

According to question:-

 =  \frac{21 + 8 \sqrt{5} }{11}  +  \frac{21 - 8 \sqrt{5} }{11}

 =  \frac{21 + 8 \sqrt{5} + 21 - 8 \sqrt{5}  }{11}

 =  \frac{42}{11}

  • HOPE IT HELPS YOU...
  • MARK AS BRAINLIEST...
  • FOLLOW ME...
  • THANKS MY ANSWERS...
Similar questions