Math, asked by khandelwalmeena62, 9 months ago

(4/5p+5/3q)² expand the expression by using suitable identity​

Answers

Answered by dinnice4u
4
See the attach image
Your ans in this pic
Attachments:
Answered by Anonymous
16

Identity used :

\large \boxed{ \boxed{ \sf {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2} }}

Calculation :

\implies\sf {\bigg( \frac{4}{5}p +  \frac{5}{3}q\bigg)}^{2} \\  \\ \implies\sf { \bigg( \frac{4}{5}q\bigg) }^{2}  + 2 \times  \frac{4}{5}p \times  \frac{5}{3}q +  {\bigg( \frac{5}{3}q\bigg) }^{2} \\ \\\implies\sf \frac{16}{25} {q}^{2} +  \frac{8}{3}pq +  \frac{25}{9}  {q}^{2}

Other important identities :

\large\implies \sf {(a - b)}^{2}  =  {a}^{2}- 2ab +  {b}^{2} \\ \\\large\implies \sf a^2 - b^2 = (a+b)(a-b) \\ \\\large\implies \sf (x+a)(x+b) = x^2 + (a+b)x+ab \\ \\ \large\implies \sf a^3 - b^3 = (a-b)(a^2 + ab + b^2)\\ \\ \large\implies \sf {(a+b)}^{2} - {(a-b)}^{2} =4ab

Similar questions