Math, asked by aryanrathore9, 11 months ago

4/5x+1/5 = 2/5 -4x
solve and verify

Answers

Answered by sulagnapalit8263
5

Given:-

Solve and verify the result of,

4/5x+1/5 = 2/5 -4x

Solution:-

 \frac{4}{5} x +  \frac{1}{5}  =  \frac{2}{5}  - 4x

 or \:  \frac{4}{5} x + 4x =  \frac{2}{5} -  \frac{1}{5}

or \:  \frac{4x + 20x}{5}  =  \frac{1}{5}

or \:  \frac{24}{5} x =  \frac{1}{5}

or \: x =  \frac{1}{24}

Verification:-

if we put the value of x in both side , we can verify the answer.

if the answer is right then we get, L.HS =R.H.S

L.H.S =  \frac{4}{5}  \times  \frac{1}{24}  +  \frac{1}{5}

 =  \frac{1}{30}  +  \frac{1}{5}

 =  \frac{1 + 6}{30}

  = \frac{7}{30}

R.H.S =  \frac{2}{5}  - 4x

 =  \frac{2}{5}  - 4 \times  \frac{1}{24}

  = \frac{12 - 5}{30}

 =  \frac{7}{30}

Hence, L.H.S=R.H.S (proved)

Answered by hukam0685
4

Step-by-step explanation:

Given:

 \frac{4x}{5}  +  \frac{1}{5}  =  \frac{2}{5}  - 4x \\  \\

To find: Solve and verify

Solution: To solve the expression

put the terms of x and constant term either side

 \frac{4x}{5}  + 4x =  \frac{2}{5}  -  \frac{1}{5 }  \\  \\  \frac{4x + 20 {x}}{5}  =  \frac{2 - 1}{5}  \\  \\ 24 x = 1 \\  \\ x =  \frac{1}{24}  \\  \\

Value of x= 1/24

Verification:

Put the value of x in LHS and RHS

\frac{4}{5} \times  \frac{1}{24}   +  \frac{1}{5}  =  \frac{2}{5}  - 4 \times  \frac{1}{24}  \\  \\  \frac{1}{30}  +  \frac{1}{5}  =  \frac{2}{5}  -  \frac{1}{6}  \\  \\  \frac{1 + 6}{30}  =  \frac{12 - 5}{30} \\  \\  \frac{7}{30}  =  \frac{7}{30}  \\  \\

LHS= RHS

HENCE VERIFIED.

Hope it helps you.

To learn more on brainly:

1)Find the value of x in the given expression x^2-7x-12.

https://brainly.in/question/5319357

2)check whether 7+3x is a factor of 3x³+7x

https://brainly.in/question/1198290

Similar questions