Math, asked by sb665011, 2 months ago

(4, 7), (1, 4), (3, 2), (6, 5) are the vertices of a parallelogram. Then find the intersect

point of its diagonals.​

Answers

Answered by monika2853
0

Answer:

hhdn dudjdhgdbsubehd hsbdhsuhshsjs

Answered by richitavermadpsv
1

Answer:

hope it's helpful to you!

Step-by-step explanation:

Given:

\textsf{Vertices of a parallelogram are}Vertices of a parallelogram are

\mathsf{(4,7),(1,4),(3,2),(6,5)}(4,7),(1,4),(3,2),(6,5)

\textbf{To find:}To find:

\textsf{Point of intersection of diagonals}Point of intersection of diagonals

\textbf{Solution:}Solution:

\textsf{Let the vertices be A(4,7),B(1,4),C(3,2),D(6,5) }Let the vertices be A(4,7),B(1,4),C(3,2),D(6,5)

\textsf{We know that,}We know that,

\boxed{\textsf{Diagonals of parallelogram bisect each other}}

Diagonals of parallelogram bisect each other

\implies\textsf{Mid point of diagonal AC= Mid point of diagonal BD}⟹Mid point of diagonal AC= Mid point of diagonal BD

\implies\textsf{Point of interection of diagonals}⟹Point of interection of diagonals

\textsf{=Mid point of the diagonals}=Mid point of the diagonals

\mathsf{=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)}=(

2

x

1

+x

2

,

2

y

1

+y

2

)

\mathsf{=\left(\dfrac{4+3}{2},\dfrac{7+2}{2}\right)}=(

2

4+3

,

2

7+2

)

\mathsf{=\left(\dfrac{7}{2},\dfrac{9}{2}\right)}=(

2

7

,

2

9

)

\therefore\mathsf{Point\;of\;intersection\;of\;diagonals\;is\;\left(\dfrac{7}{2},\dfrac{9}{2}\right)}∴Pointofintersectionofdiagonalsis(

2

7

,

Similar questions