Math, asked by kermbirkumar9076, 8 months ago

(-4/7)³×(5/8)²×(21/5)³ Solve it​

Answers

Answered by spacelover123
8

Question

Solve ⇒ \sf (\frac{-4}{7})^{3}\times (\frac{5}{8})^{2} \times (\frac{21}{5})^{3}

\rule{300}{1}

Answer

First of all, we'll apply this law of exponent ⇒ a^{m}\times b^{m} = (ab)^{m}

\sf (\frac{-4}{7})^{3}\times (\frac{5}{8})^{2} \times (\frac{21}{5})^{3}

\sf (\frac{-4}{7} \times \frac{21}{5}  )^{3}\times (\frac{5}{8})^{2}

\sf (\frac{-4}{7\div 7 } \times \frac{21\div 7 }{5}  )^{3}\times (\frac{5}{8})^{2}

\sf (\frac{-4}{1} \times \frac{3}{5}  )^{3}\times (\frac{5}{8})^{2}

\sf (\frac{-12}{5}   )^{3}\times (\frac{5}{8})^{2}

Now we will give the actual value of this rational numbers and solve.

\sf (\frac{-12}{5}   )^{3}\times (\frac{5}{8})^{2}

\sf \frac{-1728}{125} \times \frac{25}{64}

\sf \frac{-1728\div 64 }{125 \div 25 } \times \frac{25\div 25 }{64\div 64 }

\sf \frac{-27}{5 } \times \frac{1 }{1 }

\sf \frac{-27}{5}

\bf \therefore  (\frac{-4}{7})^{3}\times (\frac{5}{8})^{2} \times (\frac{21}{5})^{3} =  \frac{-27}{5}

\rule{300}{1}

Answered by Anonymous
10

 \huge\sf { _!! Question !_!  }

 \rm\red {  \huge{ ( }  \small{ \dfrac{ - 4}{7}\huge) }^{3}  \times  \huge{ ( }  \small{ \dfrac{ 5}{8}\huge) }^{2} \times  \huge{ ( }  \small{ \dfrac{ 21}{5}\huge) }^{3} }

 \huge\sf { _!! Solution !_!  }

 \sf {  \qquad \longrightarrow \huge{ ( }  \small{ \dfrac{ - 4}{7}\huge) }^{3}  \times  \huge{ ( }  \small{ \dfrac{ 5}{8}\huge) }^{2} \times  \huge{ ( }  \small{ \dfrac{ 21}{5}\huge) }^{3} }

 \sf {  \qquad \longrightarrow \huge{ ( }  \small{ \dfrac{ - 4}{ \cancel 7} \times  \dfrac{  {\cancel{ 21}}^{ \:  \: 3} }{5}\huge) }^{3}  \times  \huge{ ( }  \small{ \dfrac{ 5}{8}\huge) }^{2} }

[ Since  \rm { {x}^{n} \times { y}^{n} = {(xy)}^{n} }]

 \sf {  \qquad \longrightarrow \huge{ ( }  \small{ \dfrac{ -12}{ 5} \huge) }^{3}  \times  \huge{ ( }  \small{ \dfrac{ 5}{8}\huge) }^{2} }

 \sf {  \qquad \longrightarrow \huge{ ( }  \small\dfrac{ \cancel{ -1728} {}^{ \:  \:  - 432} } {\cancel{  125} {}^{  \: \: 5} } \huge)  \times  \huge{ ( }  \small \dfrac{\cancel{ 25}{ }^{ \: \: 1} }{\cancel{ 64} {}^{ \:  \:16 } }\huge) }

 \sf {  \qquad \longrightarrow \huge{ ( }  \small \dfrac{\cancel{-432}{}^{ \: \: -27}}{5}  \times \dfrac{1}{\cancel{16} {}^{ \: \: 1}} \huge)  }

 \sf\blue {  \qquad \longrightarrow \huge{ ( }  \small \dfrac{-27}{5} ( Ans)\huge)  }

_____________________________

 \huge\sf { _!! Additionally !_!  }

Laws of exponents:

  •  \sf { {x} ^{m} \times {x} ^{n}=  {x} ^{m+n}}

  •  \sf { {({x} ^ {m})} ^{n} = {x} ^{mn}}

  •  \sf { {(xy) } ^{m} =  {x} ^{m} {y} ^{m} }

  •  \sf {{(\dfrac{x}{y})} ^{m} = \dfrac{{x} ^{m}} {{y} ^{m}}} [Where, y ≠ 0.]

  •  \sf{ {x} ^{m} ÷{x} ^{n} = {x} ^{m-n}}

_________________________

Similar questions