Math, asked by tejasg263pdv26g, 1 year ago

4/7+4√3 Rationalize the Denominator

Answers

Answered by Anonymous
172
Heya user, Here is your answer

 \frac{4}{7 + 4 \sqrt{3} }  \\ retionalising \:  \\  \frac{4}{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\  \frac{4(7 - 4 \sqrt{3)} }{(7) {}^{2} - (4 \sqrt{3} ) {}^{2}  }  \:  \:  \:  \: a {}^{2}  -  {b}^{2}  = (a + b)(a - b) \\  \frac{4(7 - 4 \sqrt{3} )}{49 - 16 \times 3}  \\  \frac{4(7 - 4 \sqrt{3} }{49 - 48}  \\  \frac{4(7 - 4 \sqrt{3}) }{1}  \\ 4(7 - 4 \sqrt{3} ) \\ 28 - 16 \sqrt{3}
Hope it will help you
Answered by varadsuryavanshi61
3

Answer:

Heya user, Here is your answer

\begin{gathered} \frac{4}{7 + 4 \sqrt{3} } \\ retionalising \: \\ \frac{4}{7 + 4 \sqrt{3} } \times \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} } \\ \frac{4(7 - 4 \sqrt{3)} }{(7) {}^{2} - (4 \sqrt{3} ) {}^{2} } \: \: \: \: a {}^{2} - {b}^{2} = (a + b)(a - b) \\ \frac{4(7 - 4 \sqrt{3} )}{49 - 16 \times 3} \\ \frac{4(7 - 4 \sqrt{3} }{49 - 48} \\ \frac{4(7 - 4 \sqrt{3}) }{1} \\ 4(7 - 4 \sqrt{3} ) \\ 28 - 16 \sqrt{3} \end{gathered}

7+4

3

4

retionalising

7+4

3

4

×

7−4

3

7−4

3

(7)

2

−(4

3

)

2

4(7−4

3)

a

2

−b

2

=(a+b)(a−b)

49−16×3

4(7−4

3

)

49−48

4(7−4

3

1

4(7−4

3

)

4(7−4

3

)

28−16

3

Similar questions