Math, asked by StarTbia, 1 year ago

(4,7), (8,4), (7,11) Find the centroids of the triangles whose vertices are given

Answers

Answered by tiwaavi
98
Let the Points (4,7), (8,4),  and (7,11) be P(x₁, y₁), Q(x₂,y₂), and R(x₃,y₃) respectively. 

Now, Using the Formula,

G(x,y) = [ (x
₁ + x₂ + x₃)/3 , (y₁ + y₂ + y₃)/3 ]
    = [(4 + 8 + 7)/3 , (7 + 4 + 11)/3]
    = [19/3 , 22/3]
    = (19/3, 22/3)



Hence, the co-ordinates of the Point G is (19/3, 22/3).


Hope it helps. 
Answered by BrainlyConqueror0901
58

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(\frac{19}{3},\frac{22}{3})}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline  \bold{Given : }} \\   : \implies  \text{Coordinate \: of \: A = (4,7)} \\  \\ : \implies  \text{Coordinate \: of \: B = (8,4)} \\  \\ : \implies  \text{Coordinate \: of \: C = (7,11)} \\  \\ \red{ \underline  \bold{To \: Find : }} \\   : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \circ  \:   \text{Centroid \: of \: triangle(G}) \\ \\  \circ \:   \text{For \: x  }= \frac{ x_{1} +  x_{2} +  x_{3}  }{3}  \\  \\ \circ \:   \text{For \: y} = \frac{ y_{1} +  y_{2} +  y_{3}  }{3}  \\  \\  \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\   \bold{For \: x}\\   :  \implies x = \frac{ x_{1} +  x_{2} +  x_{3}  }{3} \\  \\   : \implies x =  \frac{  4+ 8 + 7}{3} \\  \\ : \implies x = \frac{19}{3}  \\  \\  \green{: \implies x =\frac{19}{3}} \\  \\  \bold{For \: y}\\   :  \implies y= \frac{ y_{1} +  y_{2} +  y_{3}  }{3} \\  \\   : \implies y=  \frac{ 7 +4+11}{3} \\  \\ : \implies y = \frac{22}{3}  \\  \\  \green{: \implies y =\frac{22}{3}} \\  \\    \green{\therefore  \text{Coordinate \: of \: centroid(G) = }(\frac{19}{3},\frac{22}{3})}

Similar questions