Math, asked by sanskritikkumari, 2 days ago

4 7. The difference between compound interest and simple interest on certain sum of money at 10% per annum for 2 years is Rs. 500. Find the sum when the interest is compounded annually​

Answers

Answered by AllenGPhilip
33

Answer:

50,000

Step-by-step explanation:

Given:

The difference between Compound interest and Simple interest on a certain sum of money at 10% p.a. for 2 yrs is 500

Principle = p = ?

Rate of interest = r = 10%

Time = n = 2 yrs

Difference = 500 [ CI - SI ]

Solution:

p[(1+i)^n-1] - p * i * t = 500

p[(1+0.1)^2-1] - p * 0.1 * 2 = 500

p[(1.1)^2-1] - p * 0.2 = 500

0.21p - 0.2p = 500

0.01p = 500

⇒ p = 50,000

Answer:

50,000

Answered by Anonymous
36

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Given,

  • The difference between compound interest and simple interest on certain sum of money at 10% per annum for 2 years is Rs. 500.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

To Find,

  • The Sum of the Interest.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution,

Let the Principal of the Interest be 'x'.

As given,

  • R = 10%,
  • T = 2 years

And,

  • C.I. - S.I. = Rs. 500

Finding the Simple Interest in the terms of 'x',

:\longrightarrow \text{S.I.} = \frac{\text{P} \times \text{R} \times \text{T}}{100} \\ \\:\longrightarrow \text{S.I.} = \frac{x  \times 2 \times 10}{100}  \\  \\ :\longrightarrow \text{S.I.} =  \frac{20}{100} x \\  \\ :\longrightarrow \text{S.I.} = \frac{x}{5}  \:  \:  \:  \:  \:  \:  \:  \: ... [1] \\

Finding Compound Interest in the terms of 'x',

Finding Amount,

:\longrightarrow \text{A} = \text{P} \bigg( 1 + \frac{\text{R}}{100} \bigg)^{\text{T}} \\ \\ :\longrightarrow \text{A} = x \bigg(1 +  \frac{10}{100}  \bigg)^{2}  \\  \\ :\longrightarrow \text{A} = x \bigg(1 +  \frac{1}{10}  \bigg)^{2}  \\  \\ :\longrightarrow \text{A} = x \bigg( \frac{11}{10}  \bigg) ^{2}  \\  \\ :\longrightarrow \text{A} =  \frac{121x}{100}  \:  \:  \:  \:  \:  \:  \:  \: ...  [2] \\

Finding Compound Interest,

:\longrightarrow \text{C.I.} = \text{A} - \text{P} \\ \\ :\longrightarrow \text{C.I.} = \frac{121x}{100}  - x \:  \:  \:  \:  \:  \:  \: ...( \text{By Eq [2]}) \\  \\ :\longrightarrow \text{C.I.} =  \frac{121x - 100x}{100}  \\  \\ :\longrightarrow \text{C.I.} =  \frac{21x}{100}  \:  \:  \:  \:  \:  \:  \:  \: ... [3] \\

According to Question,

:\longrightarrow \text{C.I.}  - \text{S.I.} =  \text{Rs.} \: 500 \\

By Equation [1] and [3],

:\longrightarrow  \frac{21x}{100}   -  \frac{x}{5}  =  \text{Rs.} \: 500 \\  \\ :\longrightarrow  \frac{21x - 20x}{100}   =  \text{Rs.} \: 500 \\  \\ :\longrightarrow  \frac{x}{100}   =  \text{Rs.} \: 500 \\  \\ :\longrightarrow  {x}  =  \text{Rs.} \: 500 \times 100 \\  \\   : \longrightarrow  {x}  =  \text{Rs.} \: 50000 \\

Therefore,

  • The value of 'x' is Rs. 50,000.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Required Answer,

  • When, The difference between compound interest and simple interest on certain sum of money at 10% per annum for 2 years is Rs. 500. Then, The Principal would be Rs. 50,000.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions