Math, asked by sasaranganesh, 7 months ago

(4.8)^x=(0.48)^y=1000 then 1/x-1/y=?​

Answers

Answered by Ayodhyavasi
3

Hello dear my self Ravi Gupta from Ayodhya Uttar Pradesh your question answer and solution is below

Answer:

 \frac{1}{x}  -  \frac{1}{y}  =  \frac{1}{3}

Step-by-step explanation:

 it \: is \: given \: that \\ {(4.8)}^{x}  =  {(0.48)}^{y}  = 1000 \\

first \: of \: all \: we \: can \: write \: it \\  {(4.8)}^{x}  = 1000 \:  \:  \: ........(i) \\  \\ and \:  {(0.45)}^{y}  = 1000 \:  \:  \:  \:  \: ........(ii)

from \: equation \: (i) \\  4.8 =  {(1000)}^{ \frac{1}{x} } .........(iii)

from \: equation \: (ii) \\  {(0.48)}^{y}  = 1000  \\  0.48 =  {1000}^{ \frac{1}{y} }  ................. (iv)

divide \: equation \: (iii) \: by \: (iv) \\ we \: get \:  \\  \frac{4.8}{0.48}  =   \frac{ {1000}^{ \frac{1}{x} } }{ {1000}^{ \frac{1}{y } } }  \\ 10 =  {1000 }^{ \frac{1}{x} -  \frac{1}{y}  }

10 =   ({10}^{3} )^{ \frac{1}{x}  -  \frac{1}{y } }  \\ 10 =  {10}^{3( \frac{1}{x}  -  \frac{1}{y})  }  \\

comparing \: power \: on \: both \: side \\ we \: get

3( \frac{1}{x}  -  \frac{1}{y} ) = 1 \\  \frac{1}{x}  -  \frac{1}{y}  =  \frac{1}{3}

Answered by sireeshamachavarapu
1

Answer:

1/3.

Step-by-step explanation:

(4.8)^x=(0.48)^y=1000

(4.8)^x=1000 , (0.48)^y=1000

4.8=x√1000 , 0.48=y√1000

48/10=1000^1/x (1) , 48/100=1000^1/y (2)

(1)÷(2)

1000^1/x÷1000^1/y=48/10÷48/100

1000^1/x-1/y=10

10^[3(1/x-1/y)] = 10

[3(1/x-1/y)] = 1 (bases are same then powers are equal)

1/x-1/y=1/3.

Similar questions
Math, 7 months ago