4×81^-1/2(81^1/2+81^3/2)
Answers
Answer:
328
Step-by-step explanation:
Assume that the given expression is
Using the power property of exponent.
On further simplification.
Using the negative power property of exponent.
Cancel out the common factors.
Therefore, the value of given expression is 328.
Answer:
Answer:
328
Step-by-step explanation:
Assume that the given expression is
4\times 81^{-\frac{1}{2}}\times (81^{\frac{1}{2}}+81^{\frac{3}{2}})4×81
−
2
1
×(81
2
1
+81
2
3
)
Using the power property of exponent.
4\times (81^{\frac{1}{2}})^{-1}\times (81^{\frac{1}{2}}+(81^{\frac{1}{2}})^3)4×(81
2
1
)
−1
×(81
2
1
+(81
2
1
)
3
) [\because a^{mn}=(a^m)^n][∵a
mn
=(a
m
)
n
]
4\times (9)^{-1}\times (9+(9)^3)4×(9)
−1
×(9+(9)
3
)
On further simplification.
4\times (9)^{-1}\times (9+729)4×(9)
−1
×(9+729)
4\times (9)^{-1}\times 7384×(9)
−1
×738
Using the negative power property of exponent.
4\times \frac{1}{9}\times 7384×
9
1
×738 [\because a^{-n}=\frac{1}{a^n}][∵a
−n
=
a
n
1
]
Cancel out the common factors.
4\times 824×82
328328
Therefore, the value of given expression is 328.