⁴√(81)² evaluate the following question
Answers
Answer:
The value of expression is (\sqrt[4]{81})^{-2}=\frac{1}{9}(
4
81
)
−2
=
9
1
Step-by-step explanation:
Given : Expression (\sqrt[4]{81})^{-2}(
4
81
)
−2
To find : The value of the expression ?
Solution :
Expression (\sqrt[4]{81})^{-2}(
4
81
)
−2
We can write 81 as 3^43
4
,
(\sqrt[4]{81})^{-2}=(\sqrt[4]{3^{4}})^{-2}(
4
81
)
−2
=(
4
3
4
)
−2
(\sqrt[4]{81})^{-2}=(3^{\frac{4}{4}})^{-2}(
4
81
)
−2
=(3
4
4
)
−2
(\sqrt[4]{81})^{-2}=(3^{1})^{-2}(
4
81
)
−2
=(3
1
)
−2
(\sqrt[4]{81})^{-2}=(3)^{-2}(
4
81
)
−2
=(3)
−2
(\sqrt[4]{81})^{-2}=\frac{1}{3^2}(
4
81
)
−2
=
3
2
1
(\sqrt[4]{81})^{-2}=\frac{1}{9}(
4
81
)
−2
=
9
1
Therefore, the value of expression is (\sqrt[4]{81})^{-2}=\frac{1}{9}(
4
81
)
−2
=
9
1
#Learn more
Find the value of 5 root 4 root a square
Answer:
324
Step-by-step explanation:
Simplify the radical by breaking the radicand up into a product of known factors assuming positive real numbers
324