Math, asked by Anonymous, 2 months ago

4. A chord subtends an angle of 90°at the centre of a circle whose radius is 20 cm. Compute the area of the corresponding major segment of the circle.

5. A square is inscribed in a circle. Calculate the ratio of the area of the circle and the square.

6. Find the area of the sector of a circle with radius 4cm and of angle 30°. Also, find the area of the corresponding major sector.​

Answers

Answered by AadityaSingh01
7

4. \downarrow

Given:-

  • A chord subtends an angle of 90° at the centre.
  • Radius of the circle is of 20 cm.

To Find:-

  • Area of the major segment of the circle ?

Solution:-

Here, To find area of the major segment we use certain formula

\sf{So,\ Area\ of\ the\ major\ segment\ =\ \dfrac{\pi r^{2} (360^{\circ} - \theta)}{360^{\circ}} + \dfrac{1}{2}r^{2} sin\theta}

Now, Putting all the values in the formula we get,

\sf{\Longrightarrow \dfrac{\dfrac{22}{7} \times 20^{2} (360^{\circ} - 90^{\circ})}{360^{\circ}} + \dfrac{1}{2} \times 20^{2} \times sin90^{\circ}}

\sf{\Longrightarrow \dfrac{\dfrac{22}{7} \times 400 \times 270^{\circ}}{360^{\circ}} + \dfrac{1}{2} \times 400 \times 1}

\sf{\Longrightarrow \dfrac{\dfrac{22}{7} \times 400 \times 3}{4} + 200}

\sf{\Longrightarrow \dfrac{22}{7} \times 100 \times 3 + 200}

\sf{\Longrightarrow 3.14 \times 100 \times 3 + 200}

\sf{\Longrightarrow 942 + 200}

\sf{\Longrightarrow 1142\ cm^{2}}

\sf{Hence,\ Area\ of\ the\ major\ segment\ is\ 1142\ cm^{2}.}

5. \downarrow

Given:-

  • A Square is inscribed in a circle.

To Find:-

  • The ratio of the area of the circle and the square.

Solution:-

Here, Let the side of the square be of \sf{x\ units.}

\sf{So,\ Diagonal\ of\ the\ square\ =\ \sqrt{2}x}

\sf{We\ Know\ that,\ Radius\ of\ the\ circle\ =\ \dfrac{Diagonal}{2}}

                                                       \sf{= \dfrac{\sqrt{2}x}{2}}

                                                       \sf{= \dfrac{x}{\sqrt{2}}}

Now, Area of square = \sf{x^{2}}

And, Area of circle = \sf{\pi r^{2}}

                               \sf{= \pi \bigg(\dfrac{x}{\sqrt{2}}\bigg)}

\sf{Now,\ Ratio\ =\ \dfrac{Area\ of\ circle}{Area\ of\ square}}

                   \sf{= \dfrac{\pi \bigg(\dfrac{x}{\sqrt{2}}\bigg)}{x^{2}}}

                   \sf{= \dfrac{\pi \times  x^{2}}{x^{2} \times 2}}

                   \sf{= \dfrac{\pi}{2}}

\sf{Hence,\ Ratio\ of\ the\ area\ of\ the\ circle\ and\ the\ square\ is\ \pi : 2.}

6. \downarrow

Given:-

  • Radius of the circle is 4 cm.
  • Angle at the centre is of 30°.

To Find:-

  • Area of the minor sector ?
  • Area of major sector ?

Solution:-

Here, To find area of the sector we use certain formula,

\sf{Area\ of\ the\ sector\ =\ \dfrac{\theta}{360^{\circ}} \times \pi r^{2}}

Now, Putting all the values we get,

\sf{\Longrightarrow \dfrac{30^{\circ}}{360^{\circ}} \times \dfrac{22}{7} \times 4^{2}}

\sf{\Longrightarrow \dfrac{1}{12} \times \dfrac{22}{7} \times 16}

\sf{\Longrightarrow \dfrac{88}{21}}

\sf{\Longrightarrow 4\dfrac{4}{21}\ cm^{2}}    \sf{\Longrightarrow 4.19\ cm^{2}}

\sf{Hence,\ Area\ of\ the\ minor\ sector\ is\ \sf{4\dfrac{4}{21}\ cm^{2}}\  or\ \sf{4.19\ cm^{2}}.}

Now, Angle of major segment = 360° - 30°

                                                  ⇒ 330°

\sf{Area\ of\ the\ sector\ =\ \dfrac{\theta}{360^{\circ}} \times \pi r^{2}}

Putting all the values in the above formula we get,

\sf{\Longrightarrow \dfrac{330^{\circ}}{360^{\circ}} \times \dfrac{22}{7} \times 4^{2}}

\sf{\Longrightarrow \dfrac{11}{12} \times \dfrac{22}{7} \times 16}

\sf{\Longrightarrow \dfrac{11}{3} \times \dfrac{22}{7} \times 4}

\sf{\Longrightarrow \dfrac{968}{21}}

\sf{\Longrightarrow 46\dfrac{2}{21}\ cm^{2}}    \sf{\Longrightarrow 46.09\ cm^{2}}

\sf{Hence,\ Area\ of\ the\ major\ sector\ is\ \sf{46\dfrac{2}{21}\ cm^{2}}\  or\ \sf{46.09\ cm^{2}}.}

Similar questions