Math, asked by proy69618, 5 hours ago

4. A connected planar graph having 12 edges, 4 regions,

contains vertices :

(a) 15

(b) 12

(c) 16

(d) 10​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{A connected planar graph having 12 edges, 4 regions}

\underline{\textbf{To find:}}

\textsf{Number of verrtices}

\underline{\textbf{Solution:}}

\underline{\textsf{Euler's formula:}}

\textsf{Let G(V,E) be a connected planar graph.}

\mathsf{Then,\;\;|V|-|E|+|F|=2}

\mathsf{|V|\;-\;No.\;of\;vertices}

\mathsf{|E|\;-\;No.\;of\;edges}

\mathsf{|F|\;-\;No.\;of\;regions}

\mathsf{Here,}

\mathsf{|E|=12\;\;\&\;\;|F|=4}

\textsf{By Euler's formula,}

\mathsf{|V|-|E|+|F|=2}

\implies\mathsf{|V|-12+4=2}

\imples\mathsf{|V|-8=2}

\imples\mathsf{|V|=2+8}

\imples\boxed{\mathsf{|V|=10}}

\therefore\textbf{No. of vertices is 10}

\underline{\textbf{Answer:}}

\textbf{Option (d) is correct}

Similar questions