Math, asked by panwarpooja7777, 4 months ago

4. A flooring tile has the shape of a parallelogram whose base is 24 cm and the
corresponding height is 10 cm. How many such tiles are required to cover a floor of
area 1080 m²? (If required you can split the tiles in whatever way you want to fill up
the corners).​

Answers

Answered by suraj5070
294

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt 4. \:A \:flooring\: tile\: has\: the\: shape\: of\: a \:parallelogram\\\tt whose\: base\: is \:24 \:cm\: and\: the \:corresponding \:height\\\tt is\: 10 \:cm.\: How\: many \:such\: tiles\: are\: required\\\tt to\: cover\: a \:floor\: of\: area\: 1080\: {m}^{2}?\\\tt (If\: required\: you\: can \:split\: the\: tiles\: in\\\tt whatever\: way \:you\: want \:to \:fill up\: the\: corners).

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Base\:of \:the \: parallelogram =24\:cm
  •  \sf \bf Height\:of \:the \: parallelogram =10\:cm

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf (i) \:Area\:of \:1\:tile
  •  \sf \bf (ii) \:Number \:of\:tiles\:required \:to \:cover \:the \:floor

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\color {lightgreen} \underline {\sf Converting \:m\:to\:cm}}

{\boxed{\color {blue} {\bf {\Big(1\:m\Big)}^{2}={\Big(100\:cm\Big)}^{2}}}}

 \sf \bf \implies 1080\:{m}^{2}=1080 \times {\Big(100\Big)}^{2}

 \sf \bf \implies 1080\:{m}^{2}=1080 \times 10000

 \implies {\boxed {\boxed {\color {green} {\sf \bf 1080\:{m}^{2}=10800000\:{cm}^{2}}}}}

——————————————————————————

{\color {lightgreen} {\underbrace {\sf \bf (i) \:Area\:of \:1\:tile}}}

{\color {gold} \underline {\sf Let \:the \:area \:of \:tile\:in\:the\:shape \:of \:a \: parallelogram \:be\:x}}

 {\boxed{\boxed {\boxed{\boxed {\color {blue} {\sf \bf A=b\times h}}}}}}

  •  \sf A=area \:of \: parallelogram
  •  \sf b=base \:of\:the \: parallelogram
  •  \sf h=height \:of\:the \: parallelogram

 {\underbrace {\overbrace {\color {orange} {\bf Substitute \:the \:values}}}}

 \sf \bf \implies x=24\times 10

 \implies {\boxed{\boxed {\color {green} {\sf \bf x=240\:{cm}^{2}}}}}

{\color {purple} \underline {\tt \therefore Area\:of \:1\:tile \:is\:240\:{cm}^{2}}}

——————————————————————————

{\color {lightgreen} {\underbrace {\sf \bf (ii) \:Number \:of\:tiles\:required \:to \:cover \:the \:floor}}}

 {\boxed {\boxed {\boxed{\color {blue} {\sf \bf Number \:of \:tiles\:required =\dfrac{Area\:of \:floor}{Area\:of \:1\:tile}}}}}}

{\color {gold} \underline {\sf Let \:the\: Number \:of \:tiles\:required \:be\:y}}

 {\underbrace {\overbrace {\color {orange} {\bf Substitute \:the \:values}}}}

 \sf \bf \implies y=\dfrac{10800000}{240}

 \sf \bf\implies y=\dfrac{\cancel {10800000}}{\cancel {240}}

 \implies {\boxed {\boxed {\color {yellow} {\sf \bf y=45000}}}}

{\underbrace {\color {red} \underline {\sf \therefore 45000 \:tiles\:are\:required \:for \:covering \:the \:floor}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \bf Area \:of\: triangle = \dfrac{1}{2}b h

 \bf Area \:of\: parallelogram = b\times h

 \bf Area \:of \:rectangle= l\times b

 \bf Area \:of \:square = {a}^{2}

Similar questions