Math, asked by manasviepandey79, 3 months ago


4. A positive number is 7 times another number. If 15 is added to both the numbers,
then one of the new number becomes times the other new number. What are the
numbers?

Answers

Answered by TRISHNADEVI
1

QUESTION :

 \\

A positive number is 7 times another number. If 15 is added to both the numbers, then one of the new number becomes ⁵/₂ times the other new number. What are the numbers ?

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

SOLUTION :

 \\  \\

Given :-

 \\

  • A positive number is 7 times of another number.

  • If 15 is added to both the numbers, then one of the new number becomes ⁵/₂ times the other new number.

 \\

To Find :-

 \\

  • The numbers = ?

 \\

Method 1 :-

 \\

Suppose,

  • The numbers are x and y.

 \\

According to first condition,

 \bigstar \:  \:  \:  \:  \:  \large{ \sf{ \: x = 7y \:  \:  \:  \:  \:  - - - - - -> (1) }}

 \\

According to second condition,

 \bigstar \:  \:  \:  \:  \large{ \sf{ x + 15 =  \dfrac{5}{2} (y + 15) \:  \:  \:  -  -  -  -  -  -  > (2)}}

 \\

From eq. (1), putting the value of x in eq. (2) :-

 \\

 \bigstar   \:  \:  \sf{x + 15 =  \dfrac{5}{2} (y + 15)} \\  \\    \sf{: \implies \: 7y + 15 =  \dfrac{5}{2} (y + 15)} \:  \\  \\  \sf{:  \implies \: 7y + 15 =  \dfrac{5 \: (y + 15)}{2} } \\  \\ \sf{:  \implies \: 7y+ 15 =  \dfrac{5y + 75}{2} } \:  \:  \:  \:  \\  \\ \sf{:  \implies \:2 \: (7y + 15) = 5y + 75} \\  \\ \sf{:  \implies \:14y + 30 = 5y + 75} \:  \:  \:   \\  \\ \sf{:  \implies \:14y - 5y = 75 - 30} \:  \:  \:  \\  \\ \sf{:  \implies \: 9y = 45} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \sf{:  \implies \: y =  \dfrac{45}{9} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\\  \\  \sf{ \large \therefore \:  \:  \underline{ \: y = 5 \: }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Putting the value of y in eq. (1) :-

 \\

  \:  \:  \: \bigstar \:  \:   \:  \:  \: \sf{ x = 7y} \\  \\  \sf{ :  \implies \: x = 7 \times  \underline{5}} \\  \\  \sf{ \large{ \therefore \:  \: \underline{ \: x = 35 \: }}}

 \\

Hence, the numbers are : 35 and 5.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Method 2 :-

 \\

Suppose,

  • One positive number is x.

 \\

According to first condition,

  • Another number will be 7x.

 \\

According to second condition,

\bigstar \:  \:  \:  \:  \large{ \sf{ 7x + 15 =  \dfrac{5}{2} (x + 15)}}

 \\

Solving the above equation :-

 \\

 \bigstar \:  \: \sf{ 7x + 15 =  \dfrac{5}{2} (x + 15)} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ : \implies \: 7x + 15 =  \dfrac{5(x + 15)}{2}} \:  \:  \:  \:  \:  \: \\  \\  \sf{ :  \implies \: 7x + 15 =  \dfrac{5x + 75}{2}} \\  \\   \:  \: \sf{ :  \implies \: 2(7x + 15) = 5x + 75}\\  \\  \sf{ :  \implies \: 14x + 30 = 5x + 75} \\  \\  \sf{ :  \implies \: 14x  - 5x = 75 - 30} \\  \\  \sf{ :  \implies \: 9x = 45} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf{ :  \implies \: x =  \dfrac{45}{9}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf{ \large{  \therefore \:  \:  \underline{ \: x = 5 \: }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

  \:  \:  \:  \:  \: \sf{Another  \:  \: number = 7x }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 7  \times \underline{5}} \\  \\   \:  \:  \:  \:  \sf{= 35}

 \\

Hence, the numbers are : 5 and 35.

\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

ANSWER :

 \\

If a positive number is 7 times another number and when 15 is added to both the numbers, one of the new number becomes times the other new number; then the numbers are 35 and 5.

Answered by Anonymous
4

 \fbox \orange{ハンはジャクソンが大好き}

Attachments:
Similar questions