Physics, asked by yuvrajsingh90, 1 year ago

4. A wire of area of cross-section 3.0 2

and natural length 50 is fixed at one end and

a mass of 2.1 is hung from the other end. Find the elastic potential energy stored in

the wire in steady state. Young’s modulus of the material of the wire = 1.9 × 1011 2 ⁄ .

Take g = 10 2​

Answers

Answered by chagsamyuktha
2

Answer:

The volume of the wire is

V=(3.0mm2)(50cm)

=(3.0×10−6m2)(0.50m)=1.5×10−6m3

Tension in the wire is

T=mg

=(2.1kg)(10ms−2)=21N.

The stress =TA

=21N3.0mm2=7.0×106Nm−2

The strain stressY

=7.0×106Nm−21.9×1011Nm,−2=3.7×10−5

The elastic potential energy of the wire is

U=12(stress)(stra∈)(volume)

=12(7.0×106Nm−2)(3.7×10−5)(1.5×10−6m3)

=1.9x10−4J.

Answered by Anonymous
41

Solution :

Volume of the wire

 \tt V = 3.0  \: {mm}^{2}  \times 50 \: cm\\  \\  \tt \implies3.0 \times  {10}^{ - 6}  \:  {m}^{2}  \times 0.50 \: m \\  \\ \tt \implies1.5 \times  {10}^{ - 6}   \: {m}^{3}

________________________________

Tension in the wire is

 \large\boxed{\tt T = mg} \\  \\  \tt \implies2.1 \: kg \times 10 \:  {m \: s}^{ - 2} \\  \\   \tt \implies  21 \: N

________________________________

 \large \boxed{ \tt The \:  stress =  \dfrac{ T}{A} }\\  \\  \tt \implies  \frac{21 \: n}{3.0 \:  {mm}^{2} }   \\  \\  \tt \implies 7.0 \times  {10}^{6} \:  n \:  {m}^{ - 2}

________________________________

 \large\boxed{ \tt The \:  strain =  \dfrac{stress}{Y}}  \\  \\  \tt \implies \frac{7.0 \times  {10}^{6} \: n \:  {m}^{ - 2}  }{1.9 \times  {10}^{11} \: n \:  {m}^{ - 2}  }  \\  \\  \tt \implies3.7 \times  {10}^{6}

________________________________

The elastic potential energy of the wire is

 \boxed{ \tt U =  \frac{1}{2}  \times stress \times strain \times volume} \\  \\  \tt \implies \frac{1}{2}  (7.0 \times  {10}^{6})(3.7 \times   {10}^{ - 5}  )(1.5 \times  {10}^{ - 6})  \\  \\  \tt \implies 1.9 \times  {10}^{4} \:J \\ \\\large \underline{ \tt \green{Energy= 1.9 \times  {10}^{4} \:J}}

Similar questions