Math, asked by unnayantyagi9bsdpsmz, 4 months ago

4. ABC is a triangle in which altitudes BE and CF to
sides AC and AB are equal (see Fig. 7.32). Show
that
(i) triangle ABE=CONGRUENT TO TRIANGLE ACF
(ii) AB=AC, i.e., ABC is an isosceles triangle.​

Attachments:

Answers

Answered by 732jainseema
8

Answer:

hey buddy I have answer for u

Step-by-step explanation:

In,ΔABE and ΔACF,

∠BAE=∠CAF (Common angle)

∠AEB=∠AFC ....(∵BE⊥AC and CF⊥AB)

BE=CF (Given that altitudes are equal)

By AAS criterion of congruence,

ΔABE≅ΔACF

Hence,

AB=AC (by CPCT)

Answered by suraj5070
327

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt 4) \:ABC\: is \:a \:triangle \:in \:which\: altitudes\: BE\: and \:CF\\\tt to \:sides \:AC \:and\: AB\: are\: equal.\: Show\: that

\tt (i)\: triangle \:ABE \:is\: CONGRUENT\: to\: triangle\: ACF.

\tt (ii) \:AB=AC\:, i.e.,\: ABC\: is \:an \:isosceles\: triangle.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf BE=CF
  •  \sf \bf BE\: and \:CF \:are\: altitudes
  •  \sf \bf \angle AFC={90}^{\circ}
  •  \sf \bf \angle AEB={90}^{\circ}

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  • \sf \bf (i)\: \triangle ABE\: \cong\: \triangle ACF.
  • \sf \bf (ii) \:AB=AC

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 \sf In \:\triangle ABE \:and \:\triangle ACF

 \sf \bf \implies \angle A=\angle A \longrightarrow \Big(Common \:Angle \Big)

 \sf \bf \implies \angle AEB=\angle AFC \longrightarrow \Big(Given\Big)

 \sf \bf \implies BE=CF \longrightarrow \Big(Given\Big)

{\orange{\boxed{\boxed{\purple{\sf \therefore \triangle ABE\:\cong\:\triangle ACF \longrightarrow \Big(AAS\:congruence \:rule\Big)}}}}}

\implies {\orange{\boxed{\boxed{\purple {\sf \bf AB=AC \longrightarrow \Big(CPCT\Big)}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 {\pink {\mathfrak{ Congruence \:rules}}}

 \sf ASA=Angle \:Side\:Angle

 \sf AAS=Angle\:Angle\:Side

 \sf SAS=Side\:Angle \:Side

 \sf SSS=Side\:Side \:Side

 \sf RHS=Right \:angle\:Hypotenuse \:Side

Attachments:
Similar questions