Math, asked by mdsalmanhussaip8aguz, 10 months ago

4. ABC is an equilateral triangle, P is a point in BC such that BP:PC = 2:1 Prove that : 9 AP= 7 AB.​

Answers

Answered by prisha90
2

Step-by-step explanation:

Learner's Section

K-12 WikiAssessmentsQ&A Forum

Educator's Section

MOOCsJoin Experts PanelThe Next World

arrow_back

Academic Questions & Answers Forum

Class-X

Maths

Asked by Pranav Satti

Sep 1, 2014

Prove that 9AD2 = 7AB2

In an equilateral Δ ABC, the side BC is trisected at D. Prove that 9AD2 = 7AB2

how_to_regFollow

thumb_upLike (13)

Answer.

 Given:   In an equilateral triangle ΔABC. The side BC is trisected at D such that BD = (1/3) BC. To prove:  9AD2  = 7AB2 Construction:  Draw AE ⊥ BC. Proof : In a ΔABC and ΔACE AB = AC ( Given) AE = AE ( common) ∠AEB = ∠AEC = 90°∴ ΔABC ≅ ΔACE ( For RHS criterion) BE = EC (By C.P.C.T) BE = EC = BC / 2 In a right angled triangle ADE AD2 = AE2 + DE2 ---------(1) In a right angled triangle ABE AB2 = AE2 + BE2 ---------(2) From equ (1) and (2) we obtain ⇒ AD2  - AB2 =  DE2 - BE2 . ⇒ AD2  - AB2 = (BE – BD)2 - BE2 . ⇒ AD2  - AB2 = (BC / 2 – BC/3)2 – (BC/2)2 ⇒ AD2  - AB2 = ((3BC – 2BC)/6)2 – (BC/2)2 ⇒ AD2  - AB2 = BC2 / 36 – BC2 / 4 ( In a equilateral triangle ΔABC, AB = BC = CA) ⇒ AD2 = AB2 + AB2 / 36 – AB2 / 4 ⇒ AD2 = (36AB2 + AB2– 9AB2) / 36 ⇒ AD2 = (28AB2) / 36 ⇒ AD2 = (7AB2) / 99AD2 = 7AB2 .

Similar questions