Math, asked by bkstm2005gmailcom, 7 months ago

4. ABC is an isosceles triangle right angled at C. Prove that ABP = 2AC2

Answers

Answered by MaheswariS
2

\underline{\textsf{Given:}}

\textsf{ABC is an isosceles triangle right angled at C}

\underline{\textsf{To prove:}}

\mathsf{AB^2=2\,AC^2}

\underline{\textsf{Solution:}}

\textsf{Pythagoras theorem:}

\boxed{\begin{minipage}{9cm}$\\\textsf{In a right angled triangle, square on the hypotenuse is}\\\\\textsf{is equal to sum of the squares on the other two sides}\\$\end{minipage}}

\textsf{since  ABC is a right angled isoceles triangle at C, we have}

\mathsf{AC= BC}\;\textsf{and AB is hypotenuse}......(1)

\textsf{By pythagoras theorem, we get}

\mathsf{AB^2=AC^2+BC^2}

\mathsf{AB^2=AC^2+AC^2}\;\;\textsf{(Using(1))}

\implies\boxed{\mathsf{AB^2=2\,AC^2}}

\textsf{Hence proved}

Find more:

The perimeter of an isosceles right-angled triangle is 6(√2+1) cm . Find its area. Please solve it with explanation.

https://brainly.in/question/2120508

Answered by Anonymous
2

ur answer is attached....

Attachments:
Similar questions