Science, asked by namrata04, 4 months ago

4) Calculate the kinetic energy of moving electron
which has a wavelength of 4.8 pm.
(mass of electron = 9.11 x 10-31 kg,
h = 6.63 x 10-34 J s).
a) 10^-10J
b) 10^-12J
c) 10^-14J
d) 10^-16J

Answers

Answered by abdulrubfaheemi
1

Answer:

Given :

Wavelength of electron = 4.8 pm

To find :

The Kinetic energy of the moving electron

Solution :

The relation between picometres and metres is given by ,

\boxed {\rm{1pm = {10}^{ - 12} \: m}}

1pm=10

−12

m

: \implies \rm \: 4.8 \: pm = 4.8 \times {10}^{ - 12} \: m:⟹4.8pm=4.8×10

−12

m

The relation between planck's constant , wavelength , kinetic energy and mass is given by ,

\dag \: \boxed {\rm{ \lambda = \frac{h}{ \sqrt{2mKE} } }}†

λ=

2mKE

h

We have ,

mass of electron = 9.1 × 10⁻³¹ kg

KE = 4.8 × 10⁻¹² m

h = 6.63 × 10⁻³⁴ J.S

By substituting the values ,

\begin{gathered} : \implies \rm \: 4.8 \times {10}^{ - 12} \: m = \frac{6.63 \times {10}^{ - 34} \: J.s}{ \sqrt{2 \times 9.1 \times {10}^{ - 31} \: kg \times KE} } \\ \\ : \implies \rm \: 4.8 \times {10}^{ - 12} \: m = \frac{6.63 \times {10}^{ - 34} \: kgm {s}^{ - 2}.s }{ \sqrt{18.2 \times {10}^{ - 31} kg \times KE} } \\ \\ : \implies \rm \: 4.8 \times {10}^{ - 12} \: m \times \sqrt{18.2 \times {10}^{ - 31} \: kg \times KE } = 6.63 \times {10}^{ - 34} \: kg.m {s}^{ - 1} \\ \\ : \implies \rm \: 4.8 \times {10}^{ - 12} \: m \times 1.34 \times {10}^{ - 15} \: kg {}^{1 \div 2} \times \sqrt{KE} = 6.63 \times {10}^{ - 34} \: kg.m {s}^{ - 1} \\ \\ : \implies \rm \: 6.432 \times {10}^{ - 27} \: kg {}^{1 \div 2} .m \times \sqrt{KE} = 6.63 \times {10}^{ - 34} \: kgm {s}^{ - 1} \\ \\ : \implies \rm \: \sqrt{KE} = \frac{6.63 \times {10}^{ - 34} \: kgm {s}^{ - 1} }{6.432 \times {10}^{ - 27} \: kg {}^{1 \div 2}.m } \end{gathered}

:⟹4.8×10

−12

m=

2×9.1×10

−31

kg×KE

6.63×10

−34

J.s

:⟹4.8×10

−12

m=

18.2×10

−31

kg×KE

6.63×10

−34

kgms

−2

.s

:⟹4.8×10

−12

18.2×10

−31

kg×KE

=6.63×10

−34

kg.ms

−1

:⟹4.8×10

−12

m×1.34×10

−15

kg

1÷2

×

KE

=6.63×10

−34

kg.ms

−1

:⟹6.432×10

−27

kg

1÷2

.m×

KE

=6.63×10

−34

kgms

−1

:⟹

KE

=

6.432×10

−27

kg

1÷2

.m

6.63×10

−34

kgms

−1

\begin{gathered} : \implies \rm \: KE= \bigg(\frac{6.63 \times {10}^{ - 34} \: kg.m {s}^{ - 1} }{6.432 \times {10}^{ - 27} \: kg {}^{1 \div 2} m} \bigg)^{2} \\ \\ : \implies \rm \: KE = \frac{(6.63 \times {10}^{ - 34} \: kgm {s}^{ - 1} ) {}^{2} }{(6.432 \times {10}^{ - 27} \: kg {}^{1 \div 2} m) {}^{2} } \\ \\ : \implies \rm \: KE= \frac{4.39 \times 10 {}^{ - 67} \: kg {}^{2} {m}^{2} {s}^{ - 2} }{4.13 \times {10}^{ - 53} \: (kg {}^{1 \div 2} ) {}^{2}m {}^{2} } \\ \\ : \implies \rm \: KE = \frac{4.39 \times 10 {}^{ - 14} \: kg {}^{2}m {}^{2} {s}^{ - 2} }{4.13 \: kgm {}^{2} } \end{gathered}

:⟹KE=(

6.432×10

−27

kg

1÷2

m

6.63×10

−34

kg.ms

−1

)

2

:⟹KE=

(6.432×10

−27

kg

1÷2

m)

2

(6.63×10

−34

kgms

−1

)

2

:⟹KE=

4.13×10

−53

(kg

1÷2

)

2

m

2

4.39×10

−67

kg

2

m

2

s

−2

:⟹KE=

4.13kgm

2

4.39×10

−14

kg

2

m

2

s

−2

\begin{gathered} : \implies \rm \: KE= \frac{4.39 \times {10}^{ - 14} \: kg.m {s}^{ - 2} }{4.13} \\ \\ : \implies \rm \: KE = 1.06 \times {10}^{ - 14} \: kg.m {s}^{ - 2} \\ \\ : \implies \rm \: KE = 1.06 \times {10}^{ - 14} \: J\end{gathered}

:⟹KE=

4.13

4.39×10

−14

kg.ms

−2

:⟹KE=1.06×10

−14

kg.ms

−2

:⟹KE=1.06×10

−14

J

Hence , The kinetic energy of the moving electron is 1.06 × 10⁻¹⁴ J

Similar questions