Physics, asked by MasterPRIYESH, 2 months ago

4.
Compute the dimensional formula of electrical
resistance​

Answers

Answered by Anonymous
19

Answer:

Potential Difference :

\longrightarrow\:\sf V = \dfrac{W}{q}

  • W = Work done
  • q = charge

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

First we will find the Dimensional formula of work:

\longrightarrow\sf [W] = [F][s]

\longrightarrow\sf [W] = [MLT^{-2}][L]

\longrightarrow\bold{[W] = [M^{1} L^{2} T^{-2}]}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Now, let's find the Dimensions of charge 'q':

\longrightarrow\sf [q] = [I][t]

\longrightarrow\sf [q] = [A][T]

\longrightarrow\bf [q] = [A^{1} T ^{1} ]

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Now, we can calculate the potential difference:

\longrightarrow\:\sf [V] = \dfrac{ [M^{1} L^{2} T^{-2}]}{[A^{1} T ^{1} ]}

\longrightarrow\:\sf [V] =  [M^{1} L^{2} T^{-2}][A^{ - 1} T ^{ - 1} ]

\longrightarrow\:\bf [V] =  [M^{1} L^{2} T^{-3}A^{ - 1} ]

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Electrical Resistance :

By applying ohm's law :

\longrightarrow\sf [V] = [I][R]

\longrightarrow\sf [R] =  \dfrac{[V]}{[I]}

\longrightarrow\sf [R] =  \dfrac{  [M^{1} L^{2} T^{-3}A^{ - 1} ]}{  [A^{1} ]}  \\

\longrightarrow\sf [R] =    [M^{1} L^{2} T^{-3}A^{ - 1} ]  [A^{ - 1} ]

\longrightarrow \underline{ \boxed{ \orange{\bf [R] =    [M^{1} L^{2} T^{-3}A^{ - 2} ]  }}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}


Anonymous: Awesome!!!
Anonymous: Thank you!
Similar questions