Math, asked by manishabhattacharya, 9 months ago

4 cos^2 a -1 =0 find the value of a​

Answers

Answered by ItzArchimedes
13

Solution:

Given ,

4cos²a - 1 = 0

Simplifying

→ 4cos²a = 1

→ cos²a = 1/4

→ cos(a) = √1/4

cos(a) = 1/2

As we know that

cos60° = 1/2

Here ,also 1/2 = cos(a)

Substituting we have

→ cos60° = cos(a)

By comparing

Angle a = 60°

Hence , angle a = 60°

#LearnMore !

Some important trigonometric identities

• sin²A + cos²A = 1

• sec²A - tan²A = 1

• cosec² - tan²A = 1

• sin2A = 2sinAcosA

• sin(A + B) = sinAcosB + cosAsinB

• sin(A - B) = sinAcosB - cosAsinB

• cos2A = 2cos²A - 1

• cos(A + B) = cosAcosB - sinAsinB

• cos(A - B) = cosAcosB + sinAsinB

Answered by InfiniteSoul
7

\sf{\underline{\underline{\large{\bold{Solution}}}}}

\sf\longrightarrow 4 cos^2 a - 1 = 0

\sf\longrightarrow 4cos^2a = 1

\sf\longrightarrow cos^2a = \dfrac{1}{4}

\sf\longrightarrow cos \: a= \sqrt{\dfrac{1}{4}}

\sf\longrightarrow cos\:a = \dfrac{1}{2}

\sf{\red{\boxed{\bold{cos 60 = \dfrac{1}{2}}}}}

\sf\longrightarrow cos\:a = cos 60

\sf\longrightarrow a = 60

____________________________

\sf{\bold{\green{\underline{\underline{More\:about\:trignometry}}}}}

  • Trigonometry means : the science which deals with the measurements of triangles .

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0  \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $    \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ &  1 &  $ \dfrac{1}{ \sqrt{3} } $ &0 \\  \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\  \cline{1-6} \cosec & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1  \\  \cline{1 - 6}\end{tabular}}

_______________________

Similar questions