4 cos cube 45 degree -3 cos 45 degree + sin 45 degree
Answers
Answered by
53
Step-by-step explanation:
4cos³45°-3cos45°+sin45°
=4×(1/√2)³-3×1/√2+1/√2
=4/2√2-3/√2+1/√2
=2/√2-3/√2+1/√2
=(2-3+1)/√2
=0/√2
=0
that's your answer,I hope it will help you.
Answered by
13
4cos³45° - 3cos45° + sin45° = 0
Given:
- 4cos³45° - 3cos45° + sin45°
To Find:
- Evaluate
Solution
Step 1:
Substitute cos45° = 1/√2 and sin45°= 1/√2
4cos³45° - 3cos45° + sin45°
= 4(1/√2)³ - 3(1/√2) + (1/√2)
Step 2:
Calculate the value
4/(2√2) - 2/√2
= 2√2 - 2/√2
= 0
Hence 4cos³45° - 3cos45° + sin45° = 0
Method 2:
Use identity cos3x = 4cos³x - 3cosx
4cos³45° - 3cos45° + sin45°
= cos(3 * 45°) + sin 45°
= cos (135°) + sin 45°
= cos(90° + 45°) + sin (45°)
cos (90 + x) = -sinx
= -sin(45°) + sin (45°)
= 0
4cos³45° - 3cos45° + sin45° = 0
Similar questions