Math, asked by pandeyshubham2, 9 months ago

4 cos square pi by 20 minus 3 multiply 4 cos square 3 pi by 20 minus 3 is equal to​

Answers

Answered by MaheswariS
4

\textbf{To find:}

\text{The value of }

(4\,cos^2\frac{\pi}{20}-3){\times}(4\,cos^2\frac{3\pi}{20}-3)

\textbf{Solution:}

\text{Consider,}

(4\,cos^2\frac{\pi}{20}-3){\times}(4\,cos^2\frac{3\pi}{20}-3)

=(4\,cos^29^{\circ}-3){\times}(4\,cos^227^{\circ}-3)

\text{Multiply both numerator and denominator by $cos\,9^{\circ}{\times}cos\,27^{\circ}$}

=\dfrac{cos\,9^{\circ}(4\,cos^29^{\circ}-3){\times}cos\,27^{\circ}(4\,cos^227^{\circ}-3)}{cos\,9^{\circ}{\times}cos\,27^{\circ}}

=\dfrac{(4\,cos^39^{\circ}-3\,cos\,9^{\circ}){\times}(4\,cos^327^{\circ}-3\,cos\,27^{\circ})}{cos\,9^{\circ}{\times}cos\,27^{\circ}}

\text{Using the identity,}

\boxed{\bf\,cos3A=4\,cos^3A-3\,cosA}

=\dfrac{(cos\,3(9^{\circ})){\times}(cos\,3(27^{\circ}))}{cos\,9^{\circ}{\times}cos\,27^{\circ}}

=\dfrac{cos\,27^{\circ}{\times}cos\,81^{\circ}}{cos\,9^{\circ}{\times}cos\,27^{\circ}}

=\dfrac{cos\,81^{\circ}}{cos\,9^{\circ}}

=\dfrac{sin\,9^{\circ}}{cos\,9^{\circ}}

=tan\,9^{\circ}

=tan\frac{\pi}{20}

\therefore\bf(4\,cos^2\frac{\pi}{20}-3){\times}(4\,cos^2\frac{3\pi}{20}-3)=tan\frac{\pi}{20}

Find more:

1.SinA+sin3A/cosA+cos 3A=tan2A prove​

https://brainly.in/question/10513680#

2.Cos 10a + cos 8a + 3cos 2a + 3cos 4a = 8cos a cos^3 3a

https://brainly.in/question/4290873

Similar questions