Math, asked by dani4220, 1 year ago

4 cos square theta - 5 sin square theta = 5. Then find the value of sec square theta - tan square theta

Answers

Answered by ihrishi
5

Answer:

4  \: {cos}^{2}  \theta - 5 \:  {sin}^{2}  \theta  = 5 \\ 4  \: {cos}^{2}  \theta - 5 \:  (1 - {cos}^{2}  \theta ) = 5  \\  4  \: {cos}^{2}  \theta - 5 \:    + 5 \:  {cos}^{2}  \theta = 5  \\ 9 \:  {cos}^{2}  \theta = 5   + 5\\ 9 \:  {cos}^{2}  \theta = 10\\  \implies \: {cos}^{2}  \theta =  \frac{10}{9}   \\ \implies \: \huge \fbox{ {sec}^{2}  \theta =  \frac{9}{10}  } \\ {tan}^{2}  \theta =  {sec}^{2}  \theta  - 1 \\ =   \frac{9}{10}  - 1 =  \frac{9 - 10}{10}  =  \frac{ - 1}{10}  \\\implies  \huge \fbox{{tan}^{2}  \theta = \frac{ - 1}{10} }\\ now \\ {sec}^{2}  \theta - {tan}^{2}  \theta =  \frac{9}{10}  - (  \frac{ - 1}{10} ) \\  =  \frac{9}{10}  +  \frac{1}{10}  =  \frac{9 + 1}{10}  =  \frac{10}{10}  = 1 \\ thus \\  \huge \fbox {{sec}^{2}  \theta - {tan}^{2}  \theta = 1}

Answered by yashsingh8704
2

Answer:

Step-by-step explanation:

m cgjcnb nbchgc

Attachments:
Similar questions