Math, asked by lakshmit5793, 1 year ago

4 cot square 60 degree + sin square 30 degree minus 2 sin squared 45 degree by sin square 60 degree + cos square 45 degree

Answers

Answered by 123sachin
20
this is your solution
Attachments:
Answered by mysticd
6

 Value \:of \: \frac{4cot^{2}60\degree + sin^{2} 30 \degree - 2sin^{2} 45 \degree }{ sin^{2} 60\degree + cos^{2} 45\degree }

We know the values of the following:

 i ) cot 60 \degree = \frac{1}{\sqrt{3}} \\ii) sin 30 \degree = \frac{1}{2} \\iii ) sin 45\degree = \frac{1}{\sqrt{2}} \\iv ) sin 60 \degree = \frac{\sqrt{3}}{2} \\v) cos 45\degree = \frac{1}{\sqrt{2}}

 = \frac{4\Big(\frac{1}{\sqrt{3}}\Big)^{2} + \Big(\frac{1}{2}\Big)^{2} - 2\Big(\frac{1}{\sqrt{2}}\Big)^{2} }{ \Big(\frac{\sqrt{3}}{2}\Big)^{2} + \Big(\frac{1}{\sqrt{2}}\Big)^{2} }

 = \frac{\Big(\frac{4}{3}\Big)+ \Big(\frac{1}{4}\Big)-\Big(\frac{2}{2}\Big)}{\Big(\frac{3}{4}\Big)+ \Big(\frac{1}{2}\Big)}

 = \frac{ \frac{16+3-12}{12}}{\frac{3+2}{4}}\\= \frac{\frac{7}{12}}{\frac{5}{4}} \\= \frac{7}{12}\times \frac{4}{5}\\= \frac{7}{15}

Therefore.,

 \red {\frac{4cot^{2}60\degree + sin^{2} 30 \degree - 2sin^{2} 45 \degree }{ sin^{2} 60\degree + cos^{2} 45\degree }}\green {= \frac{7}{15} }

•••♪

Similar questions