4. Define: - 1. Angular displacement
2. Frequency
3. Circular motion
4. Angular velocity
5. Angular acceleration
Please Define It Briefly And Don't Give The Wrong Answer..
Answers
Answer:
it will help we done like this only ii
Angular Velocity and Angular Acceleration
Angular velocity is the rate of velocity at which an object or a particle is rotating around a center or a specific point in a given time period. It is also known as rotational velocity. Angular velocity is measured in angle per unit time or radians per second (rad/s). The rate of change of angular velocity is angular acceleration. Let us learn in more detail about the relation between angular velocity and linear velocity, angular displacement and angular acceleration.
Frequency
Frequency is the number of occurrences of a repeating event per unit of time. It is also referred to as temporal frequency, which emphasizes the contrast to spatial frequency and angular frequency. Frequency is measured in units of hertz which is equal to one occurrence of a repeating event per second.
Circular motion
circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves circular motion of its parts. The equations of motion describe the movement of the center of mass of a body.
Angular displacement
Angular displacement of a body is the angle in radians (degrees, revolutions) through which a point revolves around a centre or line has been rotated in a specified sense about a specified axis. When a body rotates about its axis, the motion cannot simply be analyzed as a particle, as in circular motion it undergoes a changing velocity and acceleration at any time (t). When dealing with the rotation of a body, it becomes simpler to consider the body itself rigid. A body is generally considered rigid when the separations between all the particles remains constant throughout the body's motion, so for example parts of its mass are not flying off. In a realistic sense, all things can be deformable, however this impact is minimal and negligible. Thus the rotation of a rigid body over a fixed axis is referred to as rotational motion.