Math, asked by sharath4191, 8 months ago

(4) Determine the values of a and so that the following matrices are singular:
A=(7 3
-2 a)

Answers

Answered by pulakmath007
23

\displaystyle\huge\red{\underline{\underline{Solution}}}

A Matrix B is said to be singular if

det B = |B| = 0

Now it is given that

 \displaystyle \: A  =  \displaystyle\begin{pmatrix}  \:  \:  \: 7 &amp;  \: 3\\  - 2 &amp; \:  a \end{pmatrix} </strong><strong>

Now

   | A |  </strong></p><p><strong>=  \displaystyle\begin{vmatrix}  \:  \:  \: 7 &amp; 3 \\  - 2 &amp; a \end{vmatrix}  = (7 \times a) - ( - 2 \times 3) = 7a + 6</strong></p><p><strong>

Since A is singular

So

 \displaystyle \: 7a + 6 = 0

 \implies \: a \:  =  -  \frac{6}{7}

Similar questions