Math, asked by manjupaulanna, 8 months ago

4. Diagonal of a rectangle is
 \sqrt{89}
cm and
area is 40 sq.cm . Find the length and
breadth of the rectangle​

Answers

Answered by Darkrai14
3

Given:-

Length of one diagonal of rectangle (d) = \sqrt{89}

Area of rectangle = 40cm²

To find:-

Length and breadth of the rectangle.

Solution:-

First let's derive a relation of area and diagonal to find length + Breadth for our ease.

First, we will find Length + Breadth.

\rm Let \ Length = l, \ Breadth = b, Diagonal = d

We know that,

\rm \dashrightarrow d=\sqrt{l^2+b^2} \quad Or \quad d^2 = l^2+b^2

Add 2lb to both the sides of the equation.

\rm \dashrightarrow d^2 + 2lb = l^2+b^2+2lb

We know that, \rm (a+b)^2=a^2+b^2+2ab

Using this identity,

\rm \dashrightarrow d^2 + 2lb = (l+b)^2

\rm \boxed{\bf l+b = \sqrt{ d^2+2lb}}

____________________________

We have  \rm d = \sqrt{89}cm \ and \  Area \ of  \ rectangle \ or \ lb  = 40cm

Using the relation above, let's find out length + Breadth.

\rm\dashrightarrow l+b = \sqrt{ d^2+2lb}

Substituting the values, we get,

\rm \dashrightarrow l+b = \sqrt{ (\sqrt{89})^2+2(40)}

\rm \dashrightarrow l+b = \sqrt{ 89+80}

\rm \dashrightarrow l+b = \sqrt{ 169}

\rm \dashrightarrow l+b = 13

Since, we have

\rm d^2 = l^2+b^2

\rm \dashrightarrow \sqrt{89} = l^2+b^2

lb = 40

And

\rm l+b=13

Therefore, we can find \rm l-b and form simultaneous equation with  \rm l+b and get the values of l and b

We know that,

(a-b)² = a²+b²-2ab

Using this identity,

\rm\dashrightarrow (l-b)^2 = l^2+b^2-2lb

\rm\dashrightarrow (l-b)^2 = d^2 -2(40) \qquad \qquad ..[since, l^2+b^2=d^2]

\rm\dashrightarrow (l-b)^2 = (\sqrt{89})^2 -80\qquad \qquad ..[since, d= \sqrt{89}]

\rm\dashrightarrow (l-b)^2 = 89 -80

\rm\dashrightarrow (l-b)^2 = 9

\rm\dashrightarrow l-b =\sqrt{9}

\rm\dashrightarrow l-b = 3

Now we have \rm l + b = 13 \ and \ l-b=3

Solving the simultaneous equations.

Now add the equations.

 \rm l + b = 13 \\ \rm + \underline{l-b=3} \\\rm 2l = 16 \\ \rm \dashrightarrow l = \dfrac{16}{2} = 8

\boxed{\bf l=8}

Substituting the value of  l in l - b = 3

\rm l - b = 3 \\ \rm 8-b = 3 \\ \rm b = 8-3 \\ \boxed{ \bf b = 5}

Hence, Length is 8cm and Breadth of the rectangle is 5cm.

Similar questions