Math, asked by imadshareef735, 1 day ago

4. Draw the graphs of following Linear equation on same paper. 2x +3y = 12. x-y =1

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Consider first linear equation

\rm \: 2x + 3y = 12 \\

Substituting 'x = 0' in the given equation, we get

\rm \: 2 \times 0 + 3y = 12 \\

\rm \:  3y = 12 \\

\rm\implies \:y = 4 \\

Substituting 'y = 0' in the given equation, we get

\rm \: 2x + 3 \times 0 = 12 \\

\rm \: 2x +  0 = 12 \\

\rm \: 2x = 12 \\

\rm\implies \:x = 6 \\

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 4 \\ \\ \sf 6 & \sf 0 \end{array}} \\ \end{gathered} \\

Consider second equation of line

\rm \: x - y = 1 \\

Substituting 'x = 0' in the given equation, we get

\rm \: 0 - y = 1 \\

\rm \:  - y = 1 \\

\rm\implies \:y =  - 1 \\

Substituting 'y = 0' in the given equation, we get

\rm \: x - 0 = 1

\rm\implies \:x = 1 \\

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 & \sf 0 \\ \\ \sf 0 & \sf  - 1 \end{array}} \\ \end{gathered} \\

➢ Now draw a graph using the points (0 , 4), (6 , 0), (0, - 1) & (1 , 0)

➢ See the attachment graph.

Attachments:
Answered by talpadadilip417
3

Step-by-step explanation:

Solution

\[ \begin{array}{l} \rm 2 x+3 y=12 \\ \\  \rm x=\dfrac{12-3 y}{2} \\  \\  \rm \text{When \( \rm y=0 \), then \( \rm x=6 \)} \\  \\  \rm \text{ When \( \rm y=2 \), then \( \rm x=3 \)} \end{array} \]

 \color{green}\pmb{\large\begin{array}{|l|l|l |  } \hline \rm x  & 6&3 \\ \hline \rm y  & 0&2 \\ \hline \end{array}}

We have,

\[ \begin{array}{l}\rm x-y=1 \\ \\ \rm x=1+y \\ \\ \text{When \(\rm y=0 \), then \(\rm x=1 \)} \\ \\ \text{When \(\rm y=-1 \), then \(\rm x=0 \)}\end{array} \]

\color{blue}\pmb{\large\begin{array}{|l|l|l |  } \hline \rm x  & 1&0 \\ \hline \rm y  & 0& - 1\\ \hline \end{array}}

Attachments:
Similar questions