Math, asked by krinalsshah2114, 9 months ago

4. Factorise : x3 + x2 - 26x + 24
I have underlined that I don't understand how it came so plz can anyone slove this and explain me how it came ​

Attachments:

Answers

Answered by ankitchaudhary1997
5

Answer:

add and subtract x2 in whole equation

x3+x2-26x+24

= x3+x2-26x+24+x2-x2

= x3-x2+2x2-26x+24

= now write 26x into (-2x-24x)

that's how this equation come

= x3-x2+2x2-2x-24x+24

hope this will help u

Answered by kavyavarotaria
2

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "x2"   was replaced by   "x^2".  1 more similar replacement(s).

Step by step solution :STEP1:Checking for a perfect cube

 1.1    x3-x2-26x-24  is not a perfect cube

Trying to factor by pulling out :

 1.2      Factoring:  x3-x2-26x-24 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -26x-24 

Group 2:  x3-x2 

Pull out from each group separately :

Group 1:   (13x+12) • (-2)

Group 2:   (x-1) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 1.3    Find roots (zeroes) of :       F(x) = x3-x2-26x-24

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -24.

 The factor(s) are:

of the Leading Coefficient :  1

 of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,8 ,12 ,24

 Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor     -1     1      -1.00      0.00    x+1      -2     1      -2.00      16.00        -3     1      -3.00      18.00        -4     1      -4.00      0.00    x+4      -6     1      -6.00      -120.00        -8     1      -8.00      -392.00        -12     1     -12.00     -1584.00        -24     1     -24.00     -13800.00        1     1      1.00      -50.00        2     1      2.00      -72.00        3     1      3.00      -84.00        4     1      4.00      -80.00        6     1      6.00      0.00    x-6      8     1      8.00      216.00        12     1      12.00      1248.00        24     1      24.00     12600.00   

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

   x3-x2-26x-24 

can be divided by 3 different polynomials,including by  x-6 

Polynomial Long Division :

 1.4    Polynomial Long Division

Dividing :  x3-x2-26x-24 

                              ("Dividend")

By         :    x-6    ("Divisor")

dividend  x3 - x2 - 26x - 24 - divisor * x2   x3 - 6x2     remainder    5x2 - 26x - 24 - divisor * 5x1     5x2 - 30x   remainder      4x - 24 - divisor * 4x0       4x - 24 remainder       0

Quotient :  x2+5x+4  Remainder:  0 

Trying to factor by splitting the middle term

 1.5     Factoring  x2+5x+4 

The first term is,  x2  its coefficient is  1 .

The middle term is,  +5x  its coefficient is  5 .

The last term, "the constant", is  +4 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 4 = 4 

Step-2 : Find two factors of  4  whose sum equals the coefficient of the middle term, which is   5 .

     -4   +   -1   =   -5     -2   +   -2   =   -4     -1   +   -4   =   -5     1   +   4   =   5   That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  1  and  4 

                     x2 + 1x + 4x + 4

Step-4 : Add up the first 2 terms, pulling out like factors :

                    x • (x+1)

              Add up the last 2 terms, pulling out common factors :

                    4 • (x+1)

Step-5 : Add up the four terms of step 4 :

                    (x+4)  •  (x+1)

             Which is the desired factorization

Equation at the end of step1: (x + 4) • (x + 1) • (x - 6) = 0

Similar questions