4. Find all the zeroes of the polynomial 3x4 + 6x3 - 2x2 - 10x - 5, if two of its zeroes are V5/3 and -V5/3
Answers
Answer:
Here is your answer
Step-by-step explanation:
Let's assume √5/3 and -√5/3 are the factors of the polynomial
x + √5/3 = 0 , x - √5/3 = 0
(x+√5/3) (x-√5/3) = 0
x² - (√5/3)² = 0 using (a+b) x (a-b) = a² - b² identity
x² - 5/3 = 0
x² - 5/3√ 3x^4 + 6x³ - 2x² - 10x - 5 quotient = 3x² + 6x + 3
3x^4 + 0x³ - 5x²
(-) (-) (+)
6x³ + 3x² - 10x
6x³ - 0x² - 10x
(-) (-) (+)
3x² + 0x - 5
-3x² - 0x + 5
= 0
3x² + 6x + 3 = 0
÷ by 3
x² + 2x + 1 = 0
x² + x + x + 1 = 0
x ( x+1) 1 (x+1) = 0
x = -1,-1
So the zeroes are -1,-1, V5/3 and -V5/3