4. Find, as a fraction of one turn, the size of an angle equal to 135°
Answers
Answer:
Solution
sin(135) can be expressed as = sin (90 + 45)
Using the identity sin(A + B) = sin(A)cos(B) + cos(A)sin(B) we will expand the above sin value
= sin (90 + 45) = sin(90)cos(45) + cos(90)sin(45)
The known values of sin are
Sine Degrees/Radians Values
Sin 00 0
Sin 300 or Sin π/6 1/2
Sin 450 or Sin π/4 1/√2
Sin 600 or Sin π/3 √3/2
Sin 900 or Sin π/2 1
On substituting the known values we get
= ( 1 x 1/√2) + (0 x 1/√2)
= 1/√2
= 0.7071067. . .
Answer
Hence the value of sin 135º= 1/√2 or sin 135º= 0.7071067. . .
please drop some ❤️❤️❤️
Step-by-step explanation:
please f-o-l-l-o-w m-e bro please
Answer:
sin(135) can be expressed as = sin(90 + 45)
Using the identity sin(A + B) = sin(A) cos(B)
+ cos(A)sin(B) we will expand the above sin value
=sin(90+45)=sin(90)cos(45)+ cos(90) * sin(45)
The known values of sin are
Sine Degrees/Radians Values
Sin 00 0
Sin 300 or Sin π/61/2
Sin 450 or Sin T/41/√/2
Sin 600 or Sin pi/3 sqrt 3/2
Sin 900 or Sin pi / 21
On substituting the known values we get
=(1*1/ sqrt 2 )+(0*1/ sqrt 2 )
Step-by-step explanation:
=1/√2
=0.707106781
I hope it helps please mark me as brainliest