Math, asked by subhasis47, 8 months ago

4. Find the area of a quadrilateral ABCD whose sides
AB, BC, CD and DA are 9 m, 40 m, 28 m and 15 m
respectively and the angle between the first two
sides is a right angle.
of the quadrilateral​

Answers

Answered by AbhinaiahRavi
3

Step-by-step explanation:

The answer is given in the form of photo copy.

Attachments:
Answered by pranjalbaghel5
4

Answer:

Area of quadrilateral = 126 m²

Step-by-step explanation:

In ΔABC,

             (Hypo.)² = (Per.)² + (Base)²                      (Pythagoras theorem)

         ⇒ AC² = BC² + AB²

         ⇒ AC² = 40² + 9²

         ⇒ AC² = 1600 + 81

         ⇒ AC   = √1681

         ⇒ AC   =  41 m

Area of ΔCAD - a = 15 m

                          b = 41 m

                          c = 28 m

s = (a + b + c) / 2

  = (15 + 41 + 28) / 2

  = (84) / 2

  = 42 m  

area = √[s(s-a)(s-b)(s-c)]

       =  √[42 * (42 - 15) * (42 - 41) * (42 - 28)]

       =  √[42* 27 * 1 * 14 ]

       =  √(15876)

area of ΔCAD =  126 m²  

Area of ΔABC = 1/2 * Base * Height

                        = 1/2 * 9 * 40

                        = 180 m²

Area of quad. (ABCD) = area of ΔCAD + area of ΔABC

                                    = 126 m² + 180 m²

                                    = 306 m²

HOPE THIS HELPS YOU

Attachments:
Similar questions