4. Find the area of hexagon ABCDEF in which BL I AD, CM I AD,
EN I AD and FP I AD such that AP = 6 cm, PL = 2 cm,
LN = 8 cm, NM = 2 cm, MD = 3 cm, FP = 8 cm, EN
12 cm,
BL = 8 cm and CM = 6 cm.
Answers
Answer
The given details are,
BL⊥AD, CM⊥AD, EN⊥AD and FP⊥AD
$$AP=6 cm, PL= 2 cm, LN=8 cm, NM=2 cm, MD=3 cm, FP=8 cm, EN=12 cm. BL= 8 cm ,
CM=6cm.
AL=AP+PL=6+2=8cm
PN=PL+LN=2+8=10cm
LM=LN+NM=8+2=10cm
ND=NM+MD=2+3=5cm
By Using the formula,
Area (hex. ABCDEF) =area(△APF)+area(△DEN)+area(△ABL)+area(△CMD)+area(Trap.PNEF)+area(Trap.LMCB)
Area of triangle =1/2×base×height
Area of trapezium =1/2×(sum of parallel sides)×height
∴lets calculate,
Area(△APF)=1/2(AP)×(FP)=1/2×6×8=24cm
2
Area(△DEN)=1/2(ND)×(EN)=1/2×5×12=30cm
2
Area(△ABL)=1/2(AL)×(BL)=1/2×8×8=32cm
2
Area(△CMD)=1/2(MD)×(CM)=1/2×3×6=9cm
2
Area(Trap.DMNE)=1/2×(FP+EN)×ON=1/2×(18+12)×1=100cm
2
Area(Trap.DMNE)=1/2×(BL+CM)×LM=1/2×(BL+CM)×LM=1/2×(8+6)×10=70cm
2
∴Area(her.ABCDEF)=area(△APF)+area(△DEN)+area(△ABL)+area(△CMD)+area(Trap.PNEF)+area(Trap.LMCB)
=24+30+32+9+100+70
=265cm
2
Step-by-step explanation:
The given details are,
BL⊥AD, CM⊥AD, EN⊥AD and FP⊥AD
$$AP=6 cm, PL= 2 cm, LN=8 cm, NM=2 cm, MD=3 cm, FP=8 cm, EN=12 cm. BL= 8 cm ,
CM=6cm.
AL=AP+PL=6+2=8cm
PN=PL+LN=2+8=10cm
LM=LN+NM=8+2=10cm
ND=NM+MD=2+3=5cm
By Using the formula,
Area (hex. ABCDEF) =area(△APF)+area(△DEN)+area(△ABL)+area(△CMD)+area(Trap.PNEF)+area(Trap.LMCB)
Area of triangle =1/2×base×height
Area of trapezium =1/2×(sum of parallel sides)×height
∴lets calculate,
Area(△APF)=1/2(AP)×(FP)=1/2×6×8=24cm
2
Area(△DEN)=1/2(ND)×(EN)=1/2×5×12=30cm
2
Area(△ABL)=1/2(AL)×(BL)=1/2×8×8=32cm
2
Area(△CMD)=1/2(MD)×(CM)=1/2×3×6=9cm
2
Area(Trap.DMNE)=1/2×(FP+EN)×ON=1/2×(18+12)×1=100cm
2
Area(Trap.DMNE)=1/2×(BL+CM)×LM=1/2×(BL+CM)×LM=1/2×(8+6)×10=70cm
2
∴Area(her.ABCDEF)=area(△APF)+area(△DEN)+area(△ABL)+area(△CMD)+area(Trap.PNEF)+area(Trap.LMCB)
=24+30+32+9+100+70
=265cm
i hope it's helpful to u ❤