Math, asked by mariamraina2001, 5 months ago

4. Find the compound interest, correct to the
nearest rupee, on 2,400 for 2-
years at
5 percent per annum.

Answers

Answered by Anonymous
6

GiveN:-

  • Principal = Rs.2400
  • Rate = 5% per annum
  • Time = 2 years

To FinD:-

The compound Interest.

SolutioN:-

We know that,

\small{\green{\underline{\boxed{\bf{Compound\:Interest=\left[P\left(1+\dfrac{R}{100}\right)^n\right]-P}}}}}

where,

  • P is principal = Rs.2400
  • R is rate = 5%
  • n is time = 2 years

Putting the values,

\small\implies{\sf{Compound\:Interest=\left[2400\left(1+\dfrac{5}{100}\right)^2\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[2400\left(1+\dfrac{\cancel{5}}{\cancel{100}}\right)^2\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[2400\left(1+\dfrac{1}{20}\right)^2\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[2400\left(\dfrac{20+1}{20}\right)^2\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[2400\left(\dfrac{21}{20}\right)^2\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[2400\left(\dfrac{21}{20}\times\dfrac{21}{20}\right)\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[2400\times\dfrac{21}{20}\times\dfrac{21}{20}\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[24\cancel{0}\cancel{0}\times\dfrac{21}{2\cancel{0}}\times\dfrac{21}{2\cancel{0}}\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[24\times\dfrac{21}{2}\times\dfrac{21}{2}\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[\cancel{24}\times\dfrac{21}{\cancel{2}}\times\dfrac{21}{2}\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[12\times21\times\dfrac{21}{2}\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[\cancel{12}\times21\times\dfrac{21}{\cancel{2}}\right]-2400}}

\small\implies{\sf{Compound\:Interest=\left[6\times21\times21\right]-2400}}

\small\implies{\sf{Compound\:Interest=2646-2400}}

\large\therefore\boxed{\bf{Compound\:Interest=Rs.246.}}

  • Rs.246 is the Compound Interest for 2 years.
  • Now we have to find the interest for the ½ years

For that we have to use Simple Interest.

We know that,

\small{\green{\underline{\boxed{\bf{Simple\:Interest=\dfrac{P\times\:R\times\:T}{100}}}}}}

where,

  • Here is P i.e., principal is Rs.2646
  • R is rate = 5%
  • Time = ½ year

Putting the values,

\small\implies{\sf{Simple\:Interest=\dfrac{2646\times5\times1}{100\times2}}}

\small\implies{\sf{Simple\:Interest=\dfrac{2646\times\cancel{5}\times1}{\cancel{100}\times2}}}

\small\implies{\sf{Simple\:Interest=\dfrac{2646\times1}{20\times2}}}

\small\implies{\sf{Simple\:Interest=\dfrac{\cancel{2646}\times1}{20\times\cancel{2}}}}

\small\implies{\sf{Simple\:Interest=\dfrac{1323\times1}{20}}}

\small\implies{\sf{Simple\:Interest=\dfrac{1323}{20}}}

\large\therefore\boxed{\bf{Simple\:Interest=Rs.66.15}}

Now we have to add the compound interest and the simple interest,

\small\implies{\sf{Interest=Rs(246+66.15)}}

\small\implies{\sf{Interest=Rs.312.15}}

It is said correct to nearest rupees,

So,

\large\therefore\boxed{\bf{Compound\:Interest=Rs.312.}}

Compound Interest for 2½ years is Rs.312.

Answered by Anonymous
4

 \huge \sf \underline \red{Answer : }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \purple{ \tt{  = 312 \: }}}}}}

 \huge \sf \underline \blue{Given : }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \star \:principal = 2400}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \star \:time = 2years}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \star \:rate = 5\%}

 \sf \underline{we \: know \: that \: formula : }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \red{ \tt{A  = 1 +  \dfrac{r}{100} {}^{2}} \: }}}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{  = 2400(1 +  \dfrac{5}{100}  {}^{2})}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{  = 2400( \dfrac{105}{100}} {)}^{2}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{  =  \dfrac{2400  \times 105 \times 105 }{100 \times100 }}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ RS = 2646}

 \sf{so}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \underline \red{interest = A -  P}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \underline{ = 2646 - 2400}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \underline{ = 246}

_____________________________________

 \:  \:  \:  \:  \:  \sf \underline{After \:  next  \:  \dfrac{1}{2} year}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \star \:principal = 2646}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \star \:time =  \dfrac{1}{2} years}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \star \:rate = 5\%}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \red{ \tt{i  =  \dfrac{ptr}{100} \: }}}}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{  =  \dfrac{2646 \times 1 \times 5}{2 \times 100} }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ RS = 66.15}

_____________________________________

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \underline{ \: total \: interest = 246  + 66.15}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf  { = 312.15}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf { = 312}

Similar questions