Math, asked by choudharysimmran, 8 months ago


4. Find the lengths of the medians of a A ABC whose vertices are A (7, -3), B (5,3) and C (3,-1).

Answers

Answered by lalitnit
1

Answer:

AB mid point

d = ( \frac{7 + 5}{2} . \frac{ - 3  +  3}{2} ) \\  = (6 \: . \: 0)

So length of median CD -

 =  \sqrt{ {(3 - 6)}^{2} +  {( - 1 - 0)}^{2} }

  =  \sqrt{ 9 + 1 } =  \sqrt{10}

Next,

AC mid point

e = ( \frac{7 + 3}{2}. \frac{ - 3 - 1}{2}) \\  = (5 \:  \: . \:  \:  - 2)

So length of median BE -

 =  \sqrt{ {(5 - 5)}^{2} + {(3 + 2})^{2}   }

 =  \sqrt{25}  = 5

Finally,

Mid point of BC

f = ( \frac{5 + 3}{2}. \frac{3 - 1}{2})  \\  = (4 \:  \: . \:  \: 1)

So length of median AF -

 =  \sqrt{ {(7 - 4)}^{2} +  {( - 3 - 1)}^{2}  }

 \sqrt{9 + 16}  =  \sqrt{25}  = 5

Similar questions